
Cygwin User's Guide

Cygwin User's Guide
Copyright © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014 Red Hat, Inc.

Permission is granted to make and distribute verbatim copies of this documentation provided the copyright notice and this permission notice are
preserved on all copies.

Permission is granted to copy and distribute modified versions of this documentation under the conditions for verbatim copying, provided that the
entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into another language, under the above conditions for modified
versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation.

iii

Table of Contents
1. Cygwin Overview .. 1

What is it? ... 2
Quick Start Guide for those more experienced with Windows ... 3
Quick Start Guide for those more experienced with UNIX ... 4
Are the Cygwin tools free software? .. 5
A brief history of the Cygwin project ... 6
Highlights of Cygwin Functionality .. 7

Introduction .. 7
Permissions and Security .. 7
File Access .. 8
Text Mode vs. Binary Mode ... 9
ANSI C Library .. 9
Process Creation ... 9
Signals ... 10
Sockets .. 11
Select .. 11

What's new and what changed in Cygwin .. 12
What's new and what changed in 1.7.34 .. 12
What's new and what changed in 1.7.33 .. 12
What's new and what changed in 1.7.32 .. 13
What's new and what changed in 1.7.31 .. 13
What's new and what changed in 1.7.29 .. 13
What's new and what changed in 1.7.28 .. 13
What's new and what changed in 1.7.27 .. 13
What's new and what changed in 1.7.26 .. 13
What's new and what changed in 1.7.25 .. 14
What's new and what changed in 1.7.24 .. 14
What's new and what changed in 1.7.23 .. 14
What's new and what changed in 1.7.22 .. 14
What's new and what changed in 1.7.21 .. 14
What's new and what changed in 1.7.19 .. 14
What's new and what changed in 1.7.18 .. 15
What's new and what changed in 1.7.17 .. 15
What's new and what changed in 1.7.16 .. 15
What's new and what changed in 1.7.15 .. 15
What's new and what changed in 1.7.14 .. 15
What's new and what changed in 1.7.13 .. 15
What's new and what changed in 1.7.12 .. 15
What's new and what changed in 1.7.11 .. 16
What's new and what changed in 1.7.10 .. 16
What's new and what changed in 1.7.9 .. 17
What's new and what changed in 1.7.8 .. 17
What's new and what changed in 1.7.7 .. 18
What's new and what changed in 1.7.6 .. 18
What's new and what changed in 1.7.5 .. 19
What's new and what changed in 1.7.3 .. 19
What's new and what changed in 1.7.2 .. 19
What's new and what changed from 1.5 to 1.7 .. 20

2. Setting Up Cygwin .. 26
Internet Setup ... 27

Download Source .. 27

Cygwin User's Guide

iv

Selecting an Install Directory ... 28
Local Package Directory ... 28
Connection Method .. 28
Choosing Mirrors .. 28
Choosing Packages .. 28
Download and Installation Progress .. 29
Shortcuts .. 29
Post-Install Scripts ... 29
Troubleshooting .. 29

Environment Variables ... 31
Overview ... 31
Restricted Win32 environment ... 32

Changing Cygwin's Maximum Memory .. 33
Internationalization .. 34

Overview ... 34
How to set the locale ... 36
The Windows Console character set ... 37
Potential Problems when using Locales ... 37
List of supported character sets .. 38

Customizing bash .. 40
3. Using Cygwin ... 41

Mapping path names .. 42
Introduction .. 42
The Cygwin Mount Table ... 42
UNC paths ... 45
The cygdrive path prefix ... 45
Symbolic links .. 46
Using native Win32 paths ... 47
Using the Win32 file API in Cygwin applications ... 48
Additional Path-related Information .. 48

Text and Binary modes .. 50
The Issue ... 50
The default Cygwin behavior ... 50
Binary or text? .. 50
Programming .. 51

File permissions .. 53
Special filenames ... 54

Special files in /etc .. 54
Invalid filenames ... 54
Forbidden characters in filenames .. 54
Filenames with unusual (foreign) characters ... 55
Case sensitive filenames ... 55
POSIX devices .. 56
The .exe extension ... 59
The /proc filesystem ... 59
The /proc/registry filesystem .. 59
The @pathnames ... 60

The CYGWIN environment variable .. 61
Implemented options .. 61
Obsolete options .. 62

POSIX accounts, permission, and security ... 64
Brief overview of Windows security ... 64
Mapping Windows accounts to POSIX accounts ... 67
File permissions .. 78

Cygwin User's Guide

v

Switching the user context .. 79
Cygserver ... 84

What is Cygserver? .. 84
Cygserver command line options .. 84
How to start Cygserver ... 85
The Cygserver configuration file .. 86

Cygwin Utilities .. 87
cygcheck .. 87
cygpath .. 90
dumper .. 92
getconf ... 92
getfacl ... 93
kill .. 94
ldd .. 95
locale ... 95
minidumper .. 97
mkgroup .. 98
mkpasswd .. 99
mount .. 100
passwd ... 103
pldd ... 105
ps .. 105
regtool ... 106
setfacl .. 108
setmetamode ... 110
ssp ... 110
strace ... 112
tzset ... 114
umount ... 114

Using Cygwin effectively with Windows ... 115
Pathnames .. 115
Cygwin and Windows Networking .. 115
The cygutils package .. 116
Creating shortcuts with cygutils .. 116
Printing with cygutils ... 116

4. Programming with Cygwin .. 117
Using GCC with Cygwin .. 118

Standard Usage ... 118
Building applications for 64 bit Cygwin .. 118
GUI Mode Applications .. 119

Debugging Cygwin Programs .. 120
Building and Using DLLs ... 122

Building DLLs .. 122
Linking Against DLLs .. 123

Defining Windows Resources .. 124

vi

List of Examples
3.1. Displaying the current set of mount points ... 45
3.2. Using @pathname ... 60
3.3. Example cygcheck usage .. 88
3.4. Searching all packages for a file .. 89
3.5. Example cygpath usage ... 91
3.6. Using the kill command ... 94
3.7. Setting up group entry for current user with different domain/group separator 99
3.8. Using an alternate home root ... 100
3.9. Displaying the current set of mount points ... 101
3.10. Adding mount points .. 101
3.11. Changing the default prefix ... 103
3.12. Changing the default prefix with specific mount options ... 103
4.1. Building Hello World with GCC .. 118
4.2. 64bit-programming, Using ReadFile, 1st try ... 118
4.3. 64bit-programming, Using ReadFile, 2nd try .. 119
4.4. Compiling with -g ... 120
4.5. "break" in gdb ... 120
4.6. Debugging with command line arguments .. 120

1

Chapter 1. Cygwin Overview

Cygwin Overview

2

What is it?
Cygwin is a Linux-like environment for Windows. It consists of a DLL (cygwin1.dll), which acts
as an emulation layer providing substantial POSIX [http://www.pasc.org/#POSIX] (Portable Operating
System Interface) system call functionality, and a collection of tools, which provide a Linux look and
feel. The Cygwin DLL works with all x86 and AMD64 versions of Windows NT since Windows XP
SP3. The API follows the Single Unix Specification [http://www.opengroup.org/onlinepubs/009695399/
nfindex.html] as much as possible, and then Linux practice. The major differences between Cygwin and
Linux is the C library (newlib instead of glibc).

With Cygwin installed, users have access to many standard UNIX utilities. They can be used from one
of the provided shells such as bash or from the Windows Command Prompt. Additionally, programmers
may write Win32 console or GUI applications that make use of the standard Microsoft Win32 API and/
or the Cygwin API. As a result, it is possible to easily port many significant UNIX programs without
the need for extensive changes to the source code. This includes configuring and building most of the
available GNU software (including the development tools included with the Cygwin distribution).

http://www.pasc.org/#POSIX
http://www.pasc.org/#POSIX
http://www.opengroup.org/onlinepubs/009695399/nfindex.html
http://www.opengroup.org/onlinepubs/009695399/nfindex.html
http://www.opengroup.org/onlinepubs/009695399/nfindex.html

Cygwin Overview

3

Quick Start Guide for those more experienced
with Windows

If you are new to the world of UNIX, you may find it difficult to understand at first. This guide is not
meant to be comprehensive, so we recommend that you use the many available Internet resources to
become acquainted with UNIX basics (search for "UNIX basics" or "UNIX tutorial").

To install a basic Cygwin environment, run the setup.exe program and click Next at each page. The
default settings are correct for most users. If you want to know more about what each option means,
see the section called “Internet Setup”. Use setup.exe any time you want to update or install a Cygwin
package. If you are installing Cygwin for a specific purpose, use it to install the tools that you need.
For example, if you want to compile C++ programs, you need the gcc-g++ package and probably a
text editor like nano. When running setup.exe, clicking on categories and packages in the package
installation screen will provide you with the ability to control what is installed or updated.

Another option is to install everything by clicking on the Default field next to the All category.
However, be advised that this will download and install several hundreds of megabytes of software
to your computer. The best plan is probably to click on individual categories and install either entire
categories or packages from the categories themselves. After installation, you can find Cygwin-specific
documentation in the /usr/share/doc/Cygwin/ directory.

Developers coming from a Windows background will be able to write console or GUI executables that
rely on the Microsoft Win32 API instead of Cygwin using the mingw32 or mingw64 cross-compiler
toolchains. The -shared option to GCC allows to write Windows Dynamically Linked Libraries (DLLs).
The resource compiler windres is also provided.

Cygwin Overview

4

Quick Start Guide for those more experienced
with UNIX

If you are an experienced UNIX user who misses a powerful command-line environment, you will
enjoy Cygwin. Developers coming from a UNIX background will find a set of utilities they are already
comfortable using, including a working UNIX shell. The compiler tools are the standard GNU compilers
most people will have previously used under UNIX, only ported to the Windows host. Programmers
wishing to port UNIX software to Windows NT will find that the Cygwin library provides an easy way
to port many UNIX packages, with only minimal source code changes.

Note that there are some workarounds that cause Cygwin to behave differently than most UNIX-like
operating systems; these are described in more detail in the section called “Using Cygwin effectively
with Windows”.

Use the graphical command setup.exe any time you want to update or install a Cygwin package. This
program must be run manually every time you want to check for updated packages since Cygwin does
not currently include a mechanism for automatically detecting package updates.

By default, setup.exe only installs a minimal subset of packages. Add any other packages by clicking on
the + next to the Category name and selecting the package from the displayed list. You may search for
specfic tools by using the Setup Package Search [http://cygwin.com/packages/] at the Cygwin web site.

Another option is to install everything by clicking on the Default field next to the All category.
However, be advised that this will download and install several hundreds of megabytes of software
to your computer. The best plan is probably to click on individual categories and install either entire
categories or packages from the categories themselves. After installation, you can find Cygwin-specific
documentation in the /usr/share/doc/Cygwin/ directory.

For more information about what each option in setup.exe means, see the section called “Internet
Setup”.

http://cygwin.com/packages/
http://cygwin.com/packages/

Cygwin Overview

5

Are the Cygwin tools free software?
Yes. Parts are GNU [http://www.gnu.org/] software (gcc, gas, ld, etc.), parts are covered by the standard
X11 license [http://www.x.org/Downloads_terms.html], some of it is public domain, some of it was
written by Red Hat and placed under the GNU General Public License [http://www.gnu.org/licenses/
gpl.html] (GPL). None of it is shareware. You don't have to pay anyone to use it but you should be sure
to read the copyright section of the FAQ for more information on how the GNU GPL may affect your
use of these tools. If you intend to port a proprietary application using the Cygwin library, you may want
the Cygwin proprietary-use license. For more information about the proprietary-use license, please go to
http://www.redhat.com/services/custom/cygwin/. Customers of the native Win32 GNUPro should feel
free to submit bug reports and ask questions through Red Hat channels. All other questions should be
sent to the project mailing list <cygwin@cygwin.com>.

http://www.gnu.org/
http://www.gnu.org/
http://www.x.org/Downloads_terms.html
http://www.x.org/Downloads_terms.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.redhat.com/services/custom/cygwin/

Cygwin Overview

6

A brief history of the Cygwin project
Note

A historical look into the first years of Cygwin development is Geoffrey J. Noer's 1998 paper,
"Cygwin32: A Free Win32 Porting Layer for UNIX® Applications" which can be found at
the 2nd USENIX Windows NT Symposium Online Proceedings [http://www.usenix.org/
publications/library/proceedings/usenix-nt98/technical.html].

Cygwin began development in 1995 at Cygnus Solutions (now part of Red Hat, Inc.). The first thing
done was to enhance the development tools (gcc, gdb, gas, etc.) so that they could generate and interpret
Win32 native object files. The next task was to port the tools to Win NT/9x. We could have done this by
rewriting large portions of the source to work within the context of the Win32 API. But this would have
meant spending a huge amount of time on each and every tool. Instead, we took a substantially different
approach by writing a shared library (the Cygwin DLL) that adds the necessary UNIX-like functionality
missing from the Win32 API (fork, spawn, signals, select, sockets, etc.). We call this new
interface the Cygwin API. Once written, it was possible to build working Win32 tools using UNIX-
hosted cross-compilers, linking against this library.

From this point, we pursued the goal of producing Windows-hosted tools capable of rebuilding
themselves under Windows 9x and NT (this is often called self-hosting). Since neither OS ships with
standard UNIX user tools (fileutils, textutils, bash, etc...), we had to get the GNU equivalents working
with the Cygwin API. Many of these tools were previously only built natively so we had to modify their
configure scripts to be compatible with cross-compilation. Other than the configuration changes, very
few source-level changes had to be made since Cygwin provided a UNIX-like API. Running bash with
the development tools and user tools in place, Windows 9x and NT looked like a flavor of UNIX from
the perspective of the GNU configure mechanism. Self hosting was achieved as of the beta 17.1 release
in October 1996.

The entire Cygwin toolset was available as a monolithic install. In April 2000, the project announced
a New Cygwin Net Release [http://www.cygwin.com/ml/cygwin/2000-04/msg00269.html] which
provided the native non-Cygwin Win32 program setup.exe to install and upgrade each package
separately. Since then, the Cygwin DLL and setup.exe have seen continuous development.

The biggest major improvement in this development is the 1.7 release in 2009, which dropped Windows
95/98/Me support in favor of using Windows NT features more extensively. It adds a lot of new features
like case-sensitive filenames, NFS interoperability, IPv6 support and much more.

The latest big improvement is the 64 bit Cygwin DLL which allows to run natively on AMD64
Windows machines. The first release available in a 64 bit version is 1.7.19.

http://www.usenix.org/publications/library/proceedings/usenix-nt98/technical.html
http://www.usenix.org/publications/library/proceedings/usenix-nt98/technical.html
http://www.usenix.org/publications/library/proceedings/usenix-nt98/technical.html
http://www.cygwin.com/ml/cygwin/2000-04/msg00269.html
http://www.cygwin.com/ml/cygwin/2000-04/msg00269.html

Cygwin Overview

7

Highlights of Cygwin Functionality

Introduction

When a binary linked against the library is executed, the Cygwin DLL is loaded into the application's
text segment. Because we are trying to emulate a UNIX kernel which needs access to all processes
running under it, the first Cygwin DLL to run creates shared memory areas and global synchronization
objects that other processes using separate instances of the DLL can access. This is used to keep track
of open file descriptors and to assist fork and exec, among other purposes. Every process also has a
per_process structure that contains information such as process id, user id, signal masks, and other
similar process-specific information.

The DLL is implemented as a standard DLL in the Win32 subsystem. Under the hood it's using the
Win32 API, as well as the native NT API, where appropriate.

Note

Some restrictions apply for calls to the Win32 API. For details, see the section called
“Restricted Win32 environment”, as well as the section called “Using the Win32 file API in
Cygwin applications”.

The native NT API is used mainly for speed, as well as to access NT capabilities which are useful to
implement certain POSIX features, but are hidden to the Win32 API.

Due to some restrictions in Windows, it's not always possible to strictly adhere to existing UNIX
standards like POSIX.1. Fortunately these are mostly corner cases.

Note that many of the things that Cygwin does to provide POSIX compatibility do not mesh well with
the native Windows API. If you mix POSIX calls with Windows calls in your program it is possible that
you will see uneven results. In particular, Cygwin signals will not work with Windows functions which
block and Windows functions which accept filenames may be confused by Cygwin's support for long
filenames.

Permissions and Security

Windows NT includes a sophisticated security model based on Access Control Lists (ACLs). Cygwin
maps Win32 file ownership and permissions to ACLs by default, on file systems supporting them
(usually NTFS). Solaris style ACLs and accompanying function calls are also supported. The chmod call
maps UNIX-style permissions back to the Win32 equivalents. Because many programs expect to be able
to find the /etc/passwd and /etc/group files, we provide utilities [http://cygwin.com/cygwin-ug-
net/using-utils.html] that can be used to construct them from the user and group information provided by
the operating system.

Users with Administrator rights are permitted to chown files. With version 1.1.3 Cygwin introduced a
mechanism for setting real and effective UIDs. This is described in the section called “POSIX accounts,
permission, and security”. As of version 1.5.13, the Cygwin developers are not aware of any feature
in the Cygwin DLL that would allow users to gain privileges or to access objects to which they have
no rights under Windows. However there is no guarantee that Cygwin is as secure as the Windows it
runs on. Cygwin processes share some variables and are thus easier targets of denial of service type of
attacks.

http://cygwin.com/cygwin-ug-net/using-utils.html
http://cygwin.com/cygwin-ug-net/using-utils.html
http://cygwin.com/cygwin-ug-net/using-utils.html

Cygwin Overview

8

File Access
Cygwin supports both POSIX- and Win32-style paths, using either forward or back slashes as the
directory delimiter. Paths coming into the DLL are translated from POSIX to native NT as needed. From
the application perspective, the file system is a POSIX-compliant one. The implementation details are
safely hidden in the Cygwin DLL. UNC pathnames (starting with two slashes) are supported for network
paths.

Since version 1.7.0, the layout of this POSIX view of the Windows file system space is stored in the /
etc/fstab file. Actually, there is a system-wide /etc/fstab file as well as a user-specific fstab
file /etc/fstab.d/${USER}.

At startup the DLL has to find out where it can find the /etc/fstab file. The mechanism used for
this is simple. First it retrieves it's own path, for instance C:\Cygwin\bin\cygwin1.dll. From
there it deduces that the root path is C:\Cygwin. So it looks for the fstab file in C:\Cygwin\etc
\fstab. The layout of this file is very similar to the layout of the fstab file on Linux. Just instead of
block devices, the mount points point to Win32 paths. An installation with setup.exe installs a fstab
file by default, which can easily be changed using the editor of your choice.

The fstab file allows mounting arbitrary Win32 paths into the POSIX file system space. A special
case is the so-called cygdrive prefix. It's the path under which every available drive in the system is
mounted under its drive letter. The default value is /cygdrive, so you can access the drives as /
cygdrive/c, /cygdrive/d, etc... The cygdrive prefix can be set to some other value (/mnt for
instance) in the fstab file(s).

The library exports several Cygwin-specific functions that can be used by external programs to convert
a path or path list from Win32 to POSIX or vice versa. Shell scripts and Makefiles cannot call these
functions directly. Instead, they can do the same path translations by executing the cygpath utility
program that we provide with Cygwin.

Win32 applications handle filenames in a case preserving, but case insensitive manner. Cygwin
supports case sensitivity on file systems supporting that. Since Windows XP, the OS only supports
case sensitivity when a specific registry value is changed. Therefore, case sensitivity is not usually the
default.

Cygwin supports creating and reading symbolic links, even on Windows filesystems and OS versions
which don't support them. See the section called “Symbolic links” for details.

Hard links are fully supported on NTFS and NFS file systems. On FAT and other file systems which
don't support hardlinks, the call returns with an error, just like on other POSIX systems.

On file systems which don't support unique persistent file IDs (FAT, older Samba shares) the inode
number for a file is calculated by hashing its full Win32 path. The inode number generated by the stat
call always matches the one returned in d_ino of the dirent structure. It is worth noting that the
number produced by this method is not guaranteed to be unique. However, we have not found this to be
a significant problem because of the low probability of generating a duplicate inode number.

Cygwin 1.7 and later supports Extended Attributes (EAs) via the linux-specific function calls
getxattr, setxattr, listxattr, and removexattr. All EAs on Samba or NTFS are treated
as user EAs, so, if the name of an EA is "foo" from the Windows perspective, it's transformed into
"user.foo" within Cygwin. This allows Linux-compatible EA operations and keeps tools like attr, or
setfattr happy.

chroot is supported since Cygwin 1.1.3. However, chroot is not a concept known by Windows. This
implies some serious restrictions. First of all, the chroot call isn't a privileged call. Any user may call

Cygwin Overview

9

it. Second, the chroot environment isn't safe against native windows processes. Given that, chroot in
Cygwin is only a hack which pretends security where there is none. For that reason the usage of chroot
is discouraged.

Text Mode vs. Binary Mode
It is often important that files created by native Windows applications be interoperable with Cygwin
applications. For example, a file created by a native Windows text editor should be readable by a
Cygwin application, and vice versa.

Unfortunately, UNIX and Win32 have different end-of-line conventions in text files. A UNIX text file
will have a single newline character (LF) whereas a Win32 text file will instead use a two character
sequence (CR+LF). Consequently, the two character sequence must be translated on the fly by Cygwin
into a single character newline when reading in text mode.

This solution addresses the newline interoperability concern at the expense of violating the POSIX
requirement that text and binary mode be identical. Consequently, processes that attempt to lseek
through text files can no longer rely on the number of bytes read to be an accurate indicator of position
within the file. For this reason, Cygwin allows you to choose the mode in which a file is read in several
ways.

ANSI C Library
We chose to include Red Hat's own existing ANSI C library "newlib" as part of the library, rather than
write all of the lib C and math calls from scratch. Newlib is a BSD-derived ANSI C library, previously
only used by cross-compilers for embedded systems development. Other functions, which are not
supported by newlib have been added to the Cygwin sources using BSD implementations as much as
possible.

The reuse of existing free implementations of such things as the glob, regexp, and getopt libraries
saved us considerable effort. In addition, Cygwin uses Doug Lea's free malloc implementation that
successfully balances speed and compactness. The library accesses the malloc calls via an exported
function pointer. This makes it possible for a Cygwin process to provide its own malloc if it so desires.

Process Creation
The fork call in Cygwin is particularly interesting because it does not map well on top of the Win32
API. This makes it very difficult to implement correctly. Currently, the Cygwin fork is a non-copy-on-
write implementation similar to what was present in early flavors of UNIX.

The first thing that happens when a parent process forks a child process is that the parent initializes
a space in the Cygwin process table for the child. It then creates a suspended child process using the
Win32 CreateProcess call. Next, the parent process calls setjmp to save its own context and sets a
pointer to this in a Cygwin shared memory area (shared among all Cygwin tasks). It then fills in the
child's .data and .bss sections by copying from its own address space into the suspended child's address
space. After the child's address space is initialized, the child is run while the parent waits on a mutex.
The child discovers it has been forked and longjumps using the saved jump buffer. The child then sets
the mutex the parent is waiting on and blocks on another mutex. This is the signal for the parent to copy
its stack and heap into the child, after which it releases the mutex the child is waiting on and returns
from the fork call. Finally, the child wakes from blocking on the last mutex, recreates any memory-
mapped areas passed to it via the shared area, and returns from fork itself.

While we have some ideas as to how to speed up our fork implementation by reducing the number of
context switches between the parent and child process, fork will almost certainly always be inefficient

Cygwin Overview

10

under Win32. Fortunately, in most circumstances the spawn family of calls provided by Cygwin can
be substituted for a fork/exec pair with only a little effort. These calls map cleanly on top of the Win32
API. As a result, they are much more efficient. Changing the compiler's driver program to call spawn
instead of fork was a trivial change and increased compilation speeds by twenty to thirty percent in our
tests.

However, spawn and exec present their own set of difficulties. Because there is no way to do an actual
exec under Win32, Cygwin has to invent its own Process IDs (PIDs). As a result, when a process
performs multiple exec calls, there will be multiple Windows PIDs associated with a single Cygwin
PID. In some cases, stubs of each of these Win32 processes may linger, waiting for their exec'd Cygwin
process to exit.

Problems with process creation

The semantics of fork require that a forked child process have exactly the same address space layout as
its parent. However, Windows provides no native support for cloning address space between processes
and several features actively undermine a reliable fork implementation. Three issues are especially
prevalent:

• DLL base address collisions. Unlike *nix shared libraries, which use "position-independent code",
Windows shared libraries assume a fixed base address. Whenever the hard-wired address ranges of
two DLLs collide (which occurs quite often), the Windows loader must "rebase" one of them to a
different address. However, it may not resolve collisions consistently, and may rebase a different dll
and/or move it to a different address every time. Cygwin can usually compensate for this effect when
it involves libraries opened dynamically, but collisions among statically-linked dlls (dependencies
known at compile time) are resolved before cygwin1.dll initializes and cannot be fixed afterward.
This problem can only be solved by removing the base address conflicts which cause the problem,
usually using the rebaseall tool.

• Address space layout randomization (ASLR). Starting with Vista, Windows implements ASLR,
which means that thread stacks, heap, memory-mapped files, and statically-linked dlls are placed at
different (random) locations in each process. This behaviour interferes with a proper fork, and if an
unmovable object (process heap or system dll) ends up at the wrong location, Cygwin can do nothing
to compensate (though it will retry a few times automatically).

• DLL injection by BLODA [http://cygwin.com/faq/faq.html#faq.using.bloda]. Badly-behaved
applications which inject dlls into other processes often manage to clobber important sections of the
child's address space, leading to base address collisions which rebasing cannot fix. The only way
to resolve this problem is to remove (usually uninstall) the offending app. See the section called
“Implemented options” for the detect_bloda option, which may be able to identify the BLODA.

In summary, current Windows implementations make it impossible to implement a perfectly reliable
fork, and occasional fork failures are inevitable.

Signals
When a Cygwin process starts, the library starts a secondary thread for use in signal handling. This
thread waits for Windows events used to pass signals to the process. When a process notices it has a
signal, it scans its signal bitmask and handles the signal in the appropriate fashion.

Several complications in the implementation arise from the fact that the signal handler operates in
the same address space as the executing program. The immediate consequence is that Cygwin system
functions are interruptible unless special care is taken to avoid this. We go to some lengths to prevent
the sig_send function that sends signals from being interrupted. In the case of a process sending a signal

http://cygwin.com/faq/faq.html#faq.using.bloda
http://cygwin.com/faq/faq.html#faq.using.bloda

Cygwin Overview

11

to another process, we place a mutex around sig_send such that sig_send will not be interrupted until it
has completely finished sending the signal.

In the case of a process sending itself a signal, we use a separate semaphore/event pair instead of the
mutex. sig_send starts by resetting the event and incrementing the semaphore that flags the signal
handler to process the signal. After the signal is processed, the signal handler signals the event that it is
done. This process keeps intraprocess signals synchronous, as required by POSIX.

Most standard UNIX signals are provided. Job control works as expected in shells that support it.

Sockets
Socket-related calls in Cygwin basically call the functions by the same name in Winsock, Microsoft's
implementation of Berkeley sockets, but with lots of tweaks. All sockets are non-blocking under the
hood to allow to interrupt blocking calls by POSIX signals. Additional bookkeeping is necessary to
implement correct socket sharing POSIX semantics and especially for the select call. Some socket-
related functions are not implemented at all in Winsock, as, for example, socketpair. Starting with
Windows Vista, Microsoft removed the legacy calls rcmd(3), rexec(3) and rresvport(3).
Recent versions of Cygwin now implement all these calls internally.

An especially troublesome feature of Winsock is that it must be initialized before the first socket
function is called. As a result, Cygwin has to perform this initialization on the fly, as soon as the first
socket-related function is called by the application. In order to support sockets across fork calls, child
processes initialize Winsock if any inherited file descriptor is a socket.

AF_UNIX (AF_LOCAL) sockets are not available in Winsock. They are implemented in Cygwin
by using local AF_INET sockets instead. This is completely transparent to the application. Cygwin's
implementation also supports the getpeereid BSD extension. However, Cygwin does not yet support
descriptor passing.

IPv6 is supported beginning with Cygwin release 1.7.0. This support is dependent, however, on the
availability of the Windows IPv6 stack. The IPv6 stack was "experimental", i.e. not feature complete
in Windows 2003 and earlier. Full IPv6 support became available starting with Windows Vista and
Windows Server 2008. Cygwin does not depend on the underlying OS for the (newly implemented)
getaddrinfo and getnameinfo functions. Cygwin 1.7.0 adds replacement functions which
implement the full functionality for IPv4.

Select
The UNIX select function is another call that does not map cleanly on top of the Win32 API.
Much to our dismay, we discovered that the Win32 select in Winsock only worked on socket handles.
Our implementation allows select to function normally when given different types of file descriptors
(sockets, pipes, handles, and a custom /dev/windows Windows messages pseudo-device).

Upon entry into the select function, the first operation is to sort the file descriptors into the different
types. There are then two cases to consider. The simple case is when at least one file descriptor is a type
that is always known to be ready (such as a disk file). In that case, select returns immediately as soon
as it has polled each of the other types to see if they are ready. The more complex case involves waiting
for socket or pipe file descriptors to be ready. This is accomplished by the main thread suspending itself,
after starting one thread for each type of file descriptor present. Each thread polls the file descriptors of
its respective type with the appropriate Win32 API call. As soon as a thread identifies a ready descriptor,
that thread signals the main thread to wake up. This case is now the same as the first one since we know
at least one descriptor is ready. So select returns, after polling all of the file descriptors one last time.

Cygwin Overview

12

What's new and what changed in Cygwin

What's new and what changed in 1.7.34
• Cygwin can now generate passwd/group entries directly from Windows user databases (local SAM or

Active Directory), thus allowing to run Cygwin without having to create /etc/passwd and /etc/group
files. Introduce /etc/nsswitch.conf file to configure passwd/group handling.

For bordercase which require to use /etc/passwd and /etc/group files, change mkpasswd/mkgroup to
generate passwd/group entries compatible with the entries read from SAM/AD.

For a description of this exciting new feature see the section called “POSIX accounts, permission, and
security”.

• Add -b/--remove-all option to setfacl to reduce the ACL to only the entries representing POSIX
permission bits.

• Revamp Solaris ACL implementation to more closely work like POSIX ACLs are supposed to work.
Finally implement a CLASS_OBJ emulation. Update getfacl(1)/setfacl(1) accordingly.

What's new and what changed in 1.7.33
• /proc/cygdrive is a new symlink pointing to the current cygdrive prefix. This can be utilized in scripts

to access paths via cygdrive prefix, even if the cygdrive prefix has been changed by the user.

• /proc/partitions now prints the windows mount points the device is mounted on. This allows to
recognize the underlying Windows devices of the Cygwin raw device names.

• New API: quotactl, designed after the Linux/BSD function, but severely restricted: Windows only
supports user block quotas on NTFS, no group quotas, no inode quotas, no time constraints.

• New APIs: ffsl, ffsll (glibc extensions).

• New API: stime (SVr4).

• Provide Cygwin documentation (PDFs and HTML) for offline usage in /usr/share/doc/
cygwin-${version}.

• New internal exception handling based on SEH on 64 bit Cygwin.

• When exec'ing applications, check if $PATH exists and is non-empty. If not, add PATH variable with
Cygwin installation directory as content to Windows environment to allow loading of Cygwin system
DLLs.

• Disable CYGWIN "dosfilewarning" option by default.

• Improve various header files for C++- and standards-compliance.

• Doug Lea malloc implementation update from 2.8.3 to the latest 2.8.6.

• atexit(3) is now exported as statically linked function from libcygwin.a. This allows reliable access to
the DSO handle of the caller for newly built executables. The former atexit entry point into the DLL
remains for backward compatibility only.

Cygwin Overview

13

What's new and what changed in 1.7.32
• Export __cxa_atexit and __cxa_finalize to allow C++ standards-compliant destructor handling in

libstdc++ and g++ compiled code. Please note that, in order to benefit from this new feature, C++
code must be recompiled with the upcoming gcc 4.8.3-3 release which will enable the -fuse-cxa-atexit
flag by default, and that C++ applications using this feature will not run on older Cygwin releases.

• Support more recent CPU flags in /proc/cpuinfo.

What's new and what changed in 1.7.31
• Improve performance of send(2), sendto(2), sendmsg(2) when using small input buffers.

• The default pthread_mutex type is now PTHREAD_MUTEX_NORMAL, rather than
PTHREAD_MUTEX_ERRORCHECK, just as on Linux.

• Align pthread_attr stack functions more closely to Linux.

• Mark pthread_attr_getstackaddr and pthread_attr_setstackaddr as deprecated, as on Linux.

What's new and what changed in 1.7.29
• Allow quoting of arguments to the CYGWIN environment variable, i.e., set

CYGWIN=error_start="c:\bin\someprogram -T"

• Console screen clearing works more like xterm or mintty.

What's new and what changed in 1.7.28
• popen now supports the Glibc 'e' flag to set the FD_CLOEXEC flag on the pipe in a thread-safe way.

• New netinet/ip6.h header.

• Switch to BSD FILE stream fopen/exit semantics, as in all BSD variants and Linux/GLibc: Don't
fflush/lseek a FILE stream on fclose and exit, if it only has been read from.

What's new and what changed in 1.7.27
• Don't create native symlinks with target paths having long path prefixes "\\?\" if the target path is

shorter than MAX_PATH characters. This works around a Windows 8.1 bug: The ShellExecuteW
fails if the lpFile parameter points to a native NTFS symlink with a target path prefixed with "\\?\".

What's new and what changed in 1.7.26
• getaddrinfo now supports glibc-specific International Domain Name (IDN) extension flags: AI_IDN,

AI_CANONIDN, AI_IDN_ALLOW_UNASSIGNED, AI_IDN_USE_STD3_ASCII_RULES.

• getnameinfo now supports glibc-specific International Domain Name (IDN) extension flags: NI_IDN,
NI_IDN_ALLOW_UNASSIGNED, NI_IDN_USE_STD3_ASCII_RULES.

• Slightly improve randomness of /dev/random emulation.

• Allow to use advisory locking on any device. POSIX fcntl and lockf locking works with any device,
BSD flock locking only with devices backed by an OS handle. Right now this excludes console
windows on pre Windows 8, as well as almost all virtual files under /proc from BSD flock locking.

Cygwin Overview

14

• The header /usr/include/exceptions.h, containing implementation details for 32 bit Windows'
exception handling only, has been removed.

• Preliminary, experimental support of the posix_spawn family of functions. New associated header /
usr/include/spawn.h.

What's new and what changed in 1.7.25
• Change magic number associated with process information block so that 32-bit Cygwin processes

don't try to interpret 64-bit information and vice-versa.

• Redefine content of mtget tape info struct to allow fetching the number of partitions on a tape.

What's new and what changed in 1.7.24
• Allow application override of posix_memalign.

What's new and what changed in 1.7.23
• Added CYGWIN environment variable keyword "wincmdln" which causes Cygwin to send the full

windows command line to any subprocesses.

What's new and what changed in 1.7.22
• Support for /dev/mem, /dev/kmem and /dev/port removed, since OS support was limited to 32 bit

Windows XP only.

• Added cygwin GetCommandLine wrappers which will allow Cygwin programs to (appear to) use the
Windows command line functions.

• regcomp(3) now allows character values >= 0x80 if the current codeset is ASCII (default codeset in
the "C"/"POSIX" locale). This allows patterns containing arbitrary byte values as GLibc's regcomp.

What's new and what changed in 1.7.21
• New API: rawmemchr.

What's new and what changed in 1.7.19
• Drop support for Windows 2000 and Windows XP pre-SP3.

• Add support for building a 64 bit version of Cygwin on x86_64 natively.

• Add support for creating native NTFS symlinks starting with Windows Vista by setting the
CYGWIN=winsymlinks:native or CYGWIN=winsymlinks:nativestrict option.

• Add support for AFS filesystem.

• Preliminary support for mandatory locking via fcntl/flock/lockf, using Windows locking semantics.
New F_LCK_MANDATORY fcntl command.

• New APIs: __b64_ntop, __b64_pton, arc4random, arc4random_addrandom, arc4random_buf,
arc4random_stir, arc4random_uniform.

Cygwin Overview

15

What's new and what changed in 1.7.18
• Added Windows console cursor appearance support.

• Show/Hide Cursor mode (DECTCEM): "ESC[?25h" / "ESC[?25l"

• Set cursor style (DECSCUSR): "ESC[n q" (note the space before the q); where n is 0, 1, 2 for block
cursor, 3, 4 for underline cursor (all disregarding blinking mode), or > 4 to set the cursor height to a
percentage of the cell height.

• For performance reasons, Cygwin does not try to create sparse files automatically anymore, unless
you use the new "sparse" mount option.

• New API: cfsetspeed.

What's new and what changed in 1.7.17
• Support the "e" flag to fopen(3). This is a Glibc extension which allows to fopen the file with the

O_CLOEXEC flag set.

• Support the "x" flag to fopen(3). This is a Glibc/C11 extension which allows to open the file with the
O_EXCL flag set.

What's new and what changed in 1.7.16
• New API: getmntent_r, memrchr.

• Recognize ReFS filesystem.

What's new and what changed in 1.7.15
• CYGWIN=pipe_byte option now forces the opening of pipes in byte mode rather than message mode.

What's new and what changed in 1.7.14
• Add mouse reporting modes 1005, 1006 and 1015 to console window.

What's new and what changed in 1.7.13
• mkpasswd and mkgroup now try to print an entry for the TrustedInstaller account existing since

Windows Vista/Server 2008.

• Terminal typeahead when switching from canonical to non-canonical mode is now properly flushed.

What's new and what changed in 1.7.12
• Cygwin now automatically populates the /dev directory with all existing POSIX devices.

• Add virtual /proc/PID/mountinfo file.

• flock now additionally supports the following scenario, which requires to propagate locks to the
parent process:

Cygwin Overview

16

 (
 flock -n 9 || exit 1
 # ... commands executed under lock ...
 } 9>/var/lock/mylockfile

Only propagation to the direct parent process is supported so far, not to grand parents or sibling
processes.

• Add a "detect_bloda" setting for the CYGWIN environment variable to help finding potential
BLODAs.

What's new and what changed in 1.7.11
• New pldd command for listing DLLs loaded by a process.

• New API: scandirat.

• Change the way remote shares mapped to drive letters are recognized when creating the cygdrive
directory. If Windows claims the drive is unavailable, don't show it in the cygdrive directory listing.

• Raise default stacksize of pthreads from 512K to 1 Meg. It can still be changed using the
pthread_attr_setstacksize call.

What's new and what changed in 1.7.10
• Drop support for Windows NT4.

• The CYGWIN environment variable options "envcache", "strip_title", "title", "tty", and "upcaseenv"
have been removed.

• If the executable (and the system) is large address aware, the application heap will be placed in the
large memory area. The peflags tool from the rebase package can be used to set the large address
awareness flag in the executable file header.

• The registry setting "heap_chunk_in_mb" has been removed, in favor of a new per-executable setting
in the executable file header which can be set using the peflags tool. See the section called “Changing
Cygwin's Maximum Memory” for more information.

• The CYGWIN=tty mode using pipes to communicate with the console in a pseudo tty-like mode has
been removed. Either just use the normal Windows console as is, or use a terminal application like
mintty.

• New getconf command for querying confstr(3), pathconf(3), sysconf(3), and limits.h configuration.

• New tzset utility to generate a POSIX-compatible TZ environment variable from the Windows
timezone settings.

• The passwd command now allows an administrator to use the -R command for other user accounts:
passwd -R username.

• Pthread spinlocks. New APIs: pthread_spin_destroy, pthread_spin_init, pthread_spin_lock,
pthread_spin_trylock, pthread_spin_unlock.

• Pthread stack address management. New APIs: pthread_attr_getstack, pthread_attr_getstackaddr,
pthread_attr_getguardsize, pthread_attr_setstack, pthread_attr_setstackaddr,
pthread_attr_setguardsize, pthread_getattr_np.

Cygwin Overview

17

• POSIX Clock Selection option. New APIs: clock_nanosleep, pthread_condattr_getclock,
pthread_condattr_setclock.

• clock_gettime(3) and clock_getres(3) accept per-process and per-thread CPU-time clocks,
including CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID. New APIs:
clock_getcpuclockid, pthread_getcpuclockid.

• GNU/glibc error.h error reporting functions. New APIs: error, error_at_line. New exports:
error_message_count, error_one_per_line, error_print_progname. Also, perror and strerror_r no
longer clobber strerror storage.

• C99 <tgmath.h> type-generic macros.

• /proc/loadavg now shows the number of currently running processes and the total number of
processes.

• Added /proc/devices and /proc/misc, which lists supported device types and their device numbers.

• Added /proc/swaps, which shows the location and size of Windows paging file(s).

• Added /proc/sysvipc/msg, /proc/sysvipc/sem, and /proc/sysvipc/shm which provide information about
System V IPC message queues, semaphores, and shared memory.

• /proc/version now shows the username of whomever compiled the Cygwin DLL as well as the version
of GCC used when compiling.

• dlopen now supports the Glibc-specific RTLD_NODELETE and RTLD_NOOPEN flags.

• The printf(3) and wprintf(3) families of functions now handle the %m conversion flag.

• Other new API: clock_settime, __fpurge, getgrouplist, get_current_dir_name, getpt, ppoll, psiginfo,
psignal, ptsname_r, sys_siglist, pthread_setschedprio, pthread_sigqueue, sysinfo.

What's new and what changed in 1.7.9
• New API: strchrnul.

What's new and what changed in 1.7.8
• Drop support for Windows NT4 prior to Service Pack 4.

• Reinstantiate Cygwin's ability to delete an empty directory which is the current working directory of
the same or another process. Same for any other empty directory which has been opened by the same
or another process.

• Cygwin now ships the C standard library fenv.h header file, and implements the related APIs
(including GNU/glibc extensions): feclearexcept, fedisableexcept, feenableexcept, fegetenv,
fegetexcept, fegetexceptflag, fegetprec, fegetround, feholdexcept, feraiseexcept, fesetenv,
fesetexceptflag, fesetprec, fesetround, fetestexcept, feupdateenv, and predefines both default and no-
mask FP environments. See the GNU C Library manual [http://www.gnu.org/software/libc/manual/
html_node/Arithmetic.html] for full details of this functionality.

• Support for the C99 complex functions, except for the "long double" implementations. New APIs:
cacos, cacosf, cacosh, cacoshf, carg, cargf, casin, casinf, casinh, casinhf, catan, catanf, catanh,
catanhf, ccos, ccosf, ccosh, ccoshf, cexp, cexpf, cimag, cimagf, clog, clogf, conj, conjf, cpow, cpowf,
cproj, cprojf, creal, crealf, csin, csinf, csinh, csinhf, csqrt, csqrtf, ctan, ctanf, ctanh, ctanhf.

http://www.gnu.org/software/libc/manual/html_node/Arithmetic.html
http://www.gnu.org/software/libc/manual/html_node/Arithmetic.html
http://www.gnu.org/software/libc/manual/html_node/Arithmetic.html

Cygwin Overview

18

• Fix the width of "CJK Ambiguous Width" characters to 1 for singlebyte charsets and 2 for East
Asian multibyte charsets. (For UTF-8, it remains dependent on the specified language, and the
"@cjknarrow" locale modifier can still be used to force width 1.)

• The strerror_r interface now has two flavors; if _GNU_SOURCE is defined, it retains the previous
behavior of returning char * (but the result is now guaranteed to be NUL-terminated); otherwise it
now obeys POSIX semantics of returning int.

• /proc/sys now allows unfiltered access to the native NT namespace. Access restrictions still apply.
Direct device access via /proc/sys is not yet supported. File system access via block devices works.
For instance (note the trailing slash!)

bash$ cd /proc/sys/Device/HarddiskVolumeShadowCopy1/

• Other new APIs: llround, llroundf, madvise, pthread_yield. Export program_invocation_name,
program_invocation_short_name. Support TIOCGPGRP, TIOCSPGRP ioctls.

What's new and what changed in 1.7.7
• Partially revert the 1.7.6 change to set the Win32 current working directory (CWD) always to an

invalid directory, since it breaks backward compatibility too much. The Cygwin CWD and the Win32
CWD are now kept in sync again, unless the Cygwin CWD is not usable as Win32 CWD. See the
reworked the section called “Using the Win32 file API in Cygwin applications” for details.

• Make sure to follow the Microsoft security advisory concerning DLL hijacking. See the Microsoft
Security Advisory (2269637) "Insecure Library Loading Could Allow Remote Code Execution"
[http://www.microsoft.com/technet/security/advisory/2269637.mspx] for details.

• Allow to link against -lbinmode instead of /lib/binmode.o. Same for -ltextmode, -ltextreadmode and -
lautomode. See the section called “Programming” for details.

What's new and what changed in 1.7.6
• Add new mount options "dos" and "ihash" to allow overriding Cygwin default behaviour on broken

filesystems not recognized by Cygwin.

• Add new mount option "bind" to allow remounting parts of the POSIX file hirarchy somewhere else.

• Ttys and ptys are handled as securable objects using file-like permissions and owner/group
information. chmod and chown now work on ttys/ptys. A new mechanism is used to propagate pty
handles safely to other processes, which does not require to use Cygserver.

• Pass on coresize settings made with setrlimit(2). This allows shells to disable creating stackdump files
in child processes via

ulimit -c 0

in bash or

limit coredumpsize 0

in tcsh.

• Locale categories contain all localization strings additionally as wide-char strings. locale(1) prints
these values just as on Linux. nl_langinfo(3) allows to fetch them.

http://www.microsoft.com/technet/security/advisory/2269637.mspx
http://www.microsoft.com/technet/security/advisory/2269637.mspx
http://www.microsoft.com/technet/security/advisory/2269637.mspx

Cygwin Overview

19

• New interfaces mkostemp(3) and mkostemps(3) are added.

• New virtual file /proc/filesystems.

• clock_gettime(3) and clock_getres(3) accept CLOCK_MONOTONIC.

• DEPRECATED with 1.7.7: Cygwin handles the current working directory entirely on its own. The
Win32 current working directory is set to an invalid path to be out of the way. [...]

What's new and what changed in 1.7.5
• Support for DEC Backarrow Key Mode escape sequences (ESC [? 67 h, ESC [? 67 l) in Windows

console.

What's new and what changed in 1.7.3
• Support for GB2312/EUC-CN. These charsets are implemented as aliases to GBK. GB2312 is now

the default charset name for the locales zh_CN and zh_SG, just as on Linux.

• Modification and access timestamps of devices reflect the current time.

What's new and what changed in 1.7.2
• Localization support has been much improved.

• Cygwin now handles locales using the underlying Windows locale support. The locale must exist
in Windows to be recognized. Locale aliases from the file /usr/share/locale/locale.alias are also
allowed, as long as their replacement is supported by the underlying Windows.

• New tool "locale" to fetch locale information and default locales based on the Windows default
settings as well as lists of all supported locales and character sets.

• Default charset for locales without explicit charset is now chosen from a list of Linux-compatible
charsets.

For instance: en_US -> ISO-8859-1, ja_JP -> EUC-JP, zh_TW -> Big5.

• Added support for the charsets GEORGIAN-PS, PT154, and TIS-620.

• Support for the various locale modifiers to switch charsets as on Linux.

• Default charset in the "C" or "POSIX" locale has been changed back from UTF-8 to ASCII, to
avoid problems with applications expecting a singlebyte charset in the "C"/"POSIX" locale. Still
use UTF-8 internally for filename conversion in this case.

• LC_COLLATE, LC_MONETARY, LC_NUMERIC, and LC_TIME localization is enabled via
Windows locale support. LC_MESSAGES is enabled via a big table with localized strings.

• fnmatch(3), regcomp(3), regexec(3) calls are now multibyte-aware.

• printf(3), wprintf(3) families of functions now handle the grouping flag, the apostrophe ', per
POSIX-1.2008. The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %F,
%g, %G) will be formatted with thousands' grouping characters.

• strftime(3), wcsftime(3), and strptime(3) now handle the E and O format modifiers to print/scan
alternative date and time representations or to use alternative digits in locales which support this.

Cygwin Overview

20

Additionally these functions now also support the padding modifiers '0' and '+', as well as a field
width per POSIX-1.2008.

• New strfmon(3) call.

• Support open(2) flags O_CLOEXEC and O_TTY_INIT flags. Support fcntl flag
F_DUPFD_CLOEXEC. Support socket flags SOCK_CLOEXEC and SOCK_NONBLOCK. Add new
Linux-compatible API calls accept4(2), dup3(2), and pipe2(2). Support the signal SIGPWR.

• Enhanced Windows console support.

• The console's backspace keycode can be changed using 'stty erase'.

• Function keys send distinguished escape sequences compatible with rxvt. Keypad keys send
distinguished escape sequences, xterm-style.

• Support of combining Alt and AltGr modifiers in console window (compatible with xterm and
mintty), so that e.g. Alt-@ sends ESC @ also on keyboards where @ is mapped to an AltGr
combination.

• Report mouse wheel scroll events in mouse reporting mode 1000 (note: this doesn't seem to work
on all systems, assumedly due to driver interworking issues). Add mouse reporting mode 1002 to
report mouse drag movement. Add mouse reporting mode 1003 to report any mouse movement.
Add focus event reporting (mode 1004), compatible with xterm and mintty.

• Add escape sequences for not bold (22), not invisible (28), not blinking (25) (compatible with
xterm and mintty).

• Support VT100 line drawing graphics mode in console window (compatible with xterm and
mintty).

• Handle native DOS paths always as if mounted with "posix=0,noacl".

• Handle UNC paths starting with slashes identical to /cygdrive paths. In other words, use the /cygdrive
mount flags for these paths as well.

• Recognize NWFS filesystem and workaround broken OS call.

• New support for eXtensible Data Record (XDR) encoding and decoding, as defined by RFCs 1014,
1832, and 4506. The XDR protocol and functions are useful for cross-platfrom data exchange, and are
commonly used as the core data interchange format for Remote Procedure Call (RPC) and NFS.

What's new and what changed from 1.5 to 1.7

OS related changes

• Windows 95, 98 and Me are not supported anymore. The new Cygwin 1.7 DLL will not run on any of
these systems.

• Add support for Windows 7 and Windows Server 2008 R2.

File Access related changes

• Mount points are no longer stored in the registry. Use /etc/fstab and /etc/fstab.d/$USER instead.
Mount points created with mount(1) are only local to the current session and disappear when the last
Cygwin process in the session exits.

Cygwin Overview

21

• Cygwin creates the mount points for /, /usr/bin, and /usr/lib automatically from it's own position on
the disk. They don't have to be specified in /etc/fstab.

• If a filename cannot be represented in the current character set, the character will be converted to
a sequence Ctrl-X + UTF-8 representation of the character. This allows to access all files, even
those not having a valid representation of their filename in the current character set. To always have
a valid string, use the UTF-8 charset by setting the environment variable $LANG, $LC_ALL, or
$LC_CTYPE to a valid POSIX value, such as "en_US.UTF-8".

• PATH_MAX is now 4096. Internally, path names can be as long as the underlying OS can handle
(32K).

• struct dirent now supports d_type, filled out with DT_REG or DT_DIR. All other file types return as
DT_UNKNOWN for performance reasons.

• The CYGWIN environment variable options "ntsec" and "smbntsec" have been replaced by the per-
mount option "acl"/"noacl".

• The CYGWIN environment variable option "ntea" has been removed without substitute.

• The CYGWIN environment variable option "check_case" has been removed in favor of real case-
sensitivity on file systems supporting it.

• Creating filenames with special DOS characters '"', '*', ':', '<', '>', '|' is supported.

• Creating files with special DOS device filename components ("aux", "nul", "prn") is supported.

• File names are case sensitive if the OS and the underlying file system supports it. Works on NTFS
and NFS. Does not work on FAT and Samba shares. Requires to change a registry key (see the User's
Guide). Can be switched off on a per-mount basis.

• Due to the above changes, managed mounts have been removed.

• Incoming DOS paths are always handled case-insensitive and get no POSIX permission, as if they are
mounted with noacl,posix=0 mount flags.

• unlink(2) and rmdir(2) try very hard to remove files/directories even if they are currently accessed or
locked. This is done by utilizing the hidden recycle bin directories and marking the files for deletion.

• rename(2) rewritten to be more POSIX conformant.

• access(2) now performs checks using the real user ID, as required by POSIX; the old behavior of
querying based on effective user ID is available through the new faccessat(2) and euidaccess(2) APIs.

• Add st_birthtim member to struct stat.

• File locking is now advisory, not mandatory anymore. The fcntl(2) and the new lockf(2) APIs create
and maintain locks with POSIX semantics, the flock(2) API creates and maintains locks with BSD
semantics. POSIX and BSD locks are independent of each other.

• Implement atomic O_APPEND mode.

• New open(2) flags O_DIRECTORY, O_EXEC and O_SEARCH.

• Make the "plain file with SYSTEM attribute set" style symlink default again when creating symlinks.
Only create Windows shortcut style symlinks if CYGWIN=winsymlinks is set in the environment.

Cygwin Overview

22

• Symlinks now use UTF-16 encoding for the target filename for better internationalization support.
Cygwin 1.7 can read all old style symlinks, but the new style is not compatible with older Cygwin
releases.

• Handle NTFS native symlinks available since Vista/2008 as symlinks (but don't create Vista/2008
symlinks due to unfortunate OS restrictions).

• Recognize NFS shares and handle them using native mechanisms. Recognize and create real symlinks
on NFS shares. Get correct stat(2) information and set real mode bits on open(2), mkdir(2) and
chmod(2).

• Recognize MVFS and workaround problems manipulating metadata and handling DOS attributes.

• Recognize Netapp DataOnTap drives and fix inode number handling.

• Recognize Samba version beginning with Samba 3.0.28a using the new extended version information
negotiated with the Samba developers.

• Stop faking hardlinks by copying the file on filesystems which don't support hardlinks natively (FAT,
FAT32, etc.). Just return an error instead, just like Linux.

• List servers of all accessible domains and workgroups in // instead of just the servers in the own
domain/workgroup.

• Support Linux-like extended attributes ([fl]getxattr, [fl]listxattr, [fl]setxattr, [fl]removexattr).

• New file conversion API for conversion from Win32 to POSIX path and vice versa
(cygwin_conv_path, cygwin_create_path, cygwin_conv_path_list).

• New openat family of functions: openat, faccessat, fchmodat, fchownat, fstatat, futimesat, linkat,
mkdirat, mkfifoat, mknodat, readlinkat, renameat, symlinkat, unlinkat.

• Other new APIs: posix_fadvise, posix_fallocate, funopen, fopencookie, open_memstream,
open_wmemstream, fmemopen, fdopendir, fpurge, mkstemps, eaccess, euidaccess,
canonicalize_file_name, fexecve, execvpe.

Network related changes

• New implementation for blocking sockets and select on sockets which is supposed to allow POSIX-
compatible sharing of sockets between threads and processes.

• send/sendto/sendmsg now send data in 64K chunks to circumvent an internal buffer problem in
WinSock (KB 201213).

• New send/recv option MSG_DONTWAIT.

• IPv6 support. New APIs getaddrinfo, getnameinfo, freeaddrinfo, gai_strerror, in6addr_any,
in6addr_loopback. On IPv6-less systems, replacement functions are available for IPv4. On systems
with IPv6 enabled, the underlying WinSock functions are used. While I tried hard to get the
functionality as POSIXy as possible, keep in mind that a *fully* conformant implementation of
getaddrinfo and other stuff is only available starting with Windows Vista/2008.

• Resolver functions (res_init, res_query, res_search, res_querydomain, res_mkquery, res_send,
dn_comp, dn_expand) are now part of Cygwin. Applications don't have to link against minires
anymore. Actually, this *is* the former libminires.a.

• rcmd is now implemented inside of Cygwin, instead of calling the WinSock function. This allows
rsh(1) usage on Vista/2008 and later, which dropped this function from WinSock.

Cygwin Overview

23

• Define multicast structures in netinet/in.h. Note that fully conformant multicast support is only
available beginning with Vista/2008.

• Improve get_ifconf. Redefine struct ifreq and subsequent datastructures to be able to keep
more information. Support SIOCGIFINDEX, SIOCGIFDSTADDR and the Cygwin specific
SIOCGIFFRNDLYNAM. Support real interface flags on systems supporting them.

• Other new APIs: bindresvport, bindresvport_sa, gethostbyname2, iruserok_sa, rcmd_af, rresvport_af.
getifaddrs, freeifaddrs, if_nametoindex, if_indextoname, if_nameindex, if_freenameindex.

• Add /proc/net/if_inet6.

Device related changes

• Reworked pipe implementation which uses overlapped IO to create more reliable interruptible pipes
and fifos.

• The CYGWIN environment variable option "binmode" has been removed.

• Improved fifo handling by using native Windows named pipes.

• Detect when a stdin/stdout which looks like a pipe is really a tty. Among other things, this allows a
debugged application to recognize that it is using the same tty as the debugger.

• Support UTF-8 in console window.

• In the console window the backspace key now emits DEL (0x7f) instead of BS (0x08), Alt-Backspace
emits ESC-DEL (0x1b,0x7f) instead of DEL (0x7f), same as the Linux console and xterm. Control-
Space now emits an ASCII NUL (0x0) character.

• Support up to 64 serial interfaces using /dev/ttyS0 - /dev/ttyS63.

• Support up to 128 raw disk drives /dev/sda - /dev/sddx.

• New API: cfmakeraw, get_avphys_pages, get_nprocs, get_nprocs_conf, get_phys_pages,
posix_openpt.

Other POSIX related changes

• A lot of character sets are supported now via a call to setlocale(). The setting of the environment
variables $LANG, $LC_ALL or $LC_CTYPE will be used. For instance, setting $LANG to
"de_DE.ISO-8859-15" before starting a Cygwin session will use the ISO-8859-15 character set in the
entire session. The default locale in the absence of one of the aforementioned environment variables is
"C.UTF-8".

The full list of supported character sets: "ASCII", "ISO-8859-x" with x in 1-16, except 12, "UTF-8",
Windows codepages "CPxxx", with xxx in (437, 720, 737, 775, 850, 852, 855, 857, 858, 862, 866,
874, 1125, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258), "KOI8-R", "KOI8-U", "SJIS",
"GBK", "eucJP", "eucKR", and "Big5".

• Allow multiple concurrent read locks per thread for pthread_rwlock_t.

• Implement pthread_kill(thread, 0) as per POSIX.

• New API for POSIX IPC: Named semaphores: sem_open, sem_close, sem_unlink. Message
queues: mq_open, mq_getattr, mq_setattr, mq_notify, mq_send, mq_timedsend, mq_receive,
mq_timedreceive, mq_close, mq_unlink. Shared memory: shm_open, shm_unlink.

Cygwin Overview

24

• Only declare expected functions in <strings.h>, don't include <string.h> from here.

• Support for WCONTINUED, WIFCONTINUED() added to waitpid and wait4.

• New APIs: _Exit, confstr, insque, remque, sys_sigabbrev, posix_madvise, posix_memalign,
reallocf, exp10, exp10f, pow10, pow10f, lrint, lrintf, rint, rintf, llrint, llrintf, llrintl, lrintl, rintl,
mbsnrtowcs, strcasestr, stpcpy, stpncpy, wcpcpy, wcpncpy, wcsnlen, wcsnrtombs, wcsftime, wcstod,
wcstof, wcstoimax, wcstok, wcstol, wcstoll, wcstoul, wcstoull, wcstoumax, wcsxfrm, wcscasecmp,
wcsncasecmp, fgetwc, fgetws, fputwc, fputws, fwide, getwc, getwchar, putwc, putwchar, ungetwc,
asnprintf, dprintf, vasnprintf, vdprintf, wprintf, fwprintf, swprintf, vwprintf, vfwprintf, vswprintf,
wscanf, fwscanf, swscanf, vwscanf, vfwscanf, vswscanf.

Security related changes

• Getting a domain user's groups is hopefully more bulletproof now.

• Cygwin now comes with a real LSA authentication package. This must be manually installed by a
privileged user using the /bin/cyglsa-config script. The advantages and disadvantages are noted in
http://cygwin.com/ml/cygwin-developers/2006-11/msg00000.html

• Cygwin now allows storage and use of user passwords in a hidden area of the registry. This is tried
first when Cygwin is called by privileged processes to switch the user context. This allows, for
instance, ssh public key sessions with full network credentials to access shares on other machines.

• New options have been added to the mkpasswd and mkgroup tools to ease use in multi-machine and
multi-domain environments. The existing options have a slightly changed behaviour.

Miscellaneous

• New ldd utility, similar to Linux.

• New link libraries libdl.a, libresolv.a, librt.a.

• Fallout from the long path names: If the current working directory is longer than 260 bytes, or if the
current working directory is a virtual path (like /proc, /cygdrive, //server), don't call native Win32
programs since they don't understand these paths.

• On the first usage of a DOS path (C:\foo, \\foo\bar), the Cygwin DLL emits a scary warning that DOS
paths shouldn't be used. This warning may be disabled via the new CYGWIN=nodosfilewarning
setting.

• The CYGWIN environment variable option "server" has been removed. Cygwin automatically uses
cygserver if it's available.

• Allow environment of arbitrary size instead of a maximum of 32K.

• Don't force uppercase environment when started from a non-Cygwin process. Except for certain
Windows and POSIX variables which are always uppercased, preserve environment case. Switch
back to old behaviour with the new CYGWIN=upcaseenv setting.

• Detect and report a missing DLL on process startup.

• Add /proc/registry32 and /proc/registry64 paths to access 32 bit and 64 bit registry on 64 bit systems.

• Add the ability to distinguish registry keys and registry values with the same name in the same
registry subtree. The key is called "foo" and the value will be called "foo%val" in this case.

Cygwin Overview

25

• Align /proc/cpuinfo more closly to Linux content.

• Add /proc/$PID/mounts entries and a symlink /proc/mounts pointing to /proc/self/mounts as on
Linux.

• Optimized strstr and memmem implementation.

• Remove backwards compatibility with old signal masks. (Some *very* old programs which use signal
masks may no longer work correctly).

• Cygwin now exports wrapper functions for libstdc++ operators new and delete, to support the
toolchain in implementing full C++ standards conformance when working with shared libraries.

• Different Cygwin installations in different paths can be run in parallel without knowing of each other.
The path of the Cygwin DLL used in a process is a key used when creating IPC objects. So different
Cygwin DLLs are running in different namespaces.

• Each Cygwin DLL stores its path and installation key in the registry. This allows troubleshooting of
problems which could be a result of having multiple concurrent Cygwin installations.

26

Chapter 2. Setting Up Cygwin

Setting Up Cygwin

27

Internet Setup
To install the Cygwin net release, go to http://cygwin.com/ and run either setup-x86.exe [http://
cygwin.com/setup-x86.exe] to install the 32 bit version of Cygwin, or setup-x86_64.exe [http://
cygwin.com/setup-x86_64.exe] to install the 64 bit version of Cygwin. This will download a GUI
installer which can be run to download a complete cygwin installation via the internet. Follow the
instructions on each screen to install Cygwin.

Note
For easier reading the installer is called setup.exe throughout the following sections. This
refers likewise to both installer applications, setup-x86.exe [http://cygwin.com/setup-x86.exe]
for 32 bit, as well as setup-x86_64.exe [http://cygwin.com/setup-x86_64.exe] for 64 bit. Apart
from the target architecture they are the same thing.

The setup.exe installer is designed to be easy for new users to understand while remaining flexible for
the experienced. The volunteer development team is constantly working on setup.exe; before requesting
a new feature, check the wishlist in the CVS README [http://sourceware.org/cgi-bin/cvsweb.cgi/setup/
README?cvsroot=cygwin-apps&rev=2]. It may already be present in the CVS version!

On Windows Vista and later, setup.exe will check by default if it runs with administrative privileges
and, if not, will try to elevate the process. If you want to avoid this behaviour and install under an
unprivileged account just for your own usage, run setup.exe with the --no-admin option.

Since the default value for each option is the logical choice for most installations, you can get a working
minimal Cygwin environment installed by simply clicking the Next button at each page. The only
exception to this is choosing a Cygwin mirror, which you can choose by experimenting with those listed
at http://cygwin.com/mirrors.html [http://cygwin.com/mirrors.html]. For more details about each of
page of the setup.exe installation, read on below. Please note that this guide assumes that you have a
basic understanding of Unix (or a Unix-like OS). If you are new to Unix, you will also want to make use
of other resources [http://www.google.com/search?q=new+to+unix].

Download Source

Cygwin uses packages to manage installing various software. When the default Install from
Internet option is chosen, setup.exe creates a local directory to store the packages before actually
installing the contents. Download from Internet performs only the first part (storing the
packages locally), while Install from Local Directory performs only the second (installing
the contents of the packages).

The Download from Internet option is mainly for creating a base Cygwin package tree on one
computer for installation on several machines with Install from Local Directory; copy the
entire local package tree to another machine with the directory tree intact. For example, you might create
a C:\cache\ directory and place setup.exe in it. Run setup.exe to Install from Internet or
Download from Internet, then copy the whole C:\cache\ to each machine and instead choose
Install from Local Directory.

Though this provides some basic mirroring functionality, if you are managing a large Cygwin
installation, to keep up to date we recommend using a mirroring tool such as wget. A helpful user on
the Cygwin mailing list created a simple demonstration script to accomplish this; search the list for
mkcygwget for ideas.

http://cygwin.com/
http://cygwin.com/setup-x86.exe
http://cygwin.com/setup-x86.exe
http://cygwin.com/setup-x86.exe
http://cygwin.com/setup-x86_64.exe
http://cygwin.com/setup-x86_64.exe
http://cygwin.com/setup-x86_64.exe
http://cygwin.com/setup-x86.exe
http://cygwin.com/setup-x86.exe
http://cygwin.com/setup-x86_64.exe
http://cygwin.com/setup-x86_64.exe
http://sourceware.org/cgi-bin/cvsweb.cgi/setup/README?cvsroot=cygwin-apps&rev=2
http://sourceware.org/cgi-bin/cvsweb.cgi/setup/README?cvsroot=cygwin-apps&rev=2
http://sourceware.org/cgi-bin/cvsweb.cgi/setup/README?cvsroot=cygwin-apps&rev=2
http://cygwin.com/mirrors.html
http://cygwin.com/mirrors.html
http://www.google.com/search?q=new+to+unix
http://www.google.com/search?q=new+to+unix

Setting Up Cygwin

28

Selecting an Install Directory
The Root Directory for Cygwin (default C:\cygwin) will become / within your Cygwin
installation. You must have write access to the parent directory, and any ACLs on the parent directory
will determine access to installed files.

The Install For options of All Users or Just Me should always be left on the default All
Users, unless you do not have write access to HKEY_LOCAL_MACHINE in the registry or the All
Users Start Menu. This is true even if you are the only user planning to use Cygwin on the machine.
Selecting Just Me will cause problems for programs such as crond and sshd. If you do not have the
necessary permissions, but still want to use these programs, consult the Cygwin mailing list archives
about others' experiences.

Local Package Directory
The Local Package Directory is the cache where setup.exe stores the packages before they
are installed. The cache must not be the same folder as the Cygwin root. Within the cache, a separate
directory is created for each Cygwin mirror, which allows setup.exe to use multiple mirrors and custom
packages. After installing Cygwin, the cache is no longer necessary, but you may want to retain the
packages as backups, for installing Cygwin to another system, or in case you need to reinstall a package.

Connection Method
The Direct Connection method of downloading will directly download the packages, while the
IE5 method will leverage your IE5 cache for performance. If your organisation uses a proxy server or
auto-configuration scripts, the IE5 method also uses these settings. If you have a proxy server, you can
manually type it into the Use Proxy section. Unfortunately, setup.exe does not currently support
password authorization for proxy servers.

Choosing Mirrors
Since there is no way of knowing from where you will be downloading Cygwin, you need to choose
at least one mirror site. Cygwin mirrors are geographically distributed around the world; check the list
at http://cygwin.com/mirrors.html to find one near you. You can select multiple mirrors by holding
down CTRL and clicking on each one. If you have the URL of an unlisted mirror (for example, if your
organization has an internal Cygwin mirror) you can add it.

Choosing Packages
For each selected mirror site, setup.exe downloads a small text file called setup.bz2 that contains a
list of packages available from that site along with some basic information about each package which
setup.exe parses and uses to create the chooser window. For details about the format of this file, see the
setup.exe homepage [http://sourceware.org/cygwin-apps/setup.html].

The chooser is the most complex part of setup.exe. Packages are grouped into categories, and one
package may belong to multiple categories (assigned by the volunteer package maintainer). Each
package can be found under any of those categories in the hierarchical chooser view. By default,
setup.exe will install only the packages in the Base category and their dependencies, resulting in a
minimal Cygwin installation. However, this will not include many commonly used tools such as gcc
(which you will find in the Devel category). Since setup.exe automatically selects dependencies, be
careful not to unselect any required packages. In particular, everything in the Base category is required.

http://cygwin.com/mirrors.html
http://sourceware.org/cygwin-apps/setup.html
http://sourceware.org/cygwin-apps/setup.html
http://sourceware.org/cygwin-apps/setup.html

Setting Up Cygwin

29

You can change setup.exe's view style, which is helpful if you know the name of a package you want to
install but not which category it is in. Click on the View button and it will rotate between Category
(the default), Full (all packages), and Pending (only packages to be installed, removed or upgraded).
If you are familiar with Unix, you will probably want to at least glance through the Full listing for
your favorite tools.

Once you have an existing Cygwin installation, the setup.exe chooser is also used to manage your
Cygwin installation. Information on installed packages is kept in the /etc/setup/ directory of
your Cygwin installation; if setup.exe cannot find this directory it will act as if you have no Cygwin
installation. If setup.exe finds a newer version of an installed package available, it will automatically
mark it to be upgraded. To Uninstall, Reinstall, or get the Source for an existing package,
click on Keep to toggle it. Also, to avoid the need to reboot after upgrading, make sure to close all
Cygwin windows and stop all Cygwin processes before setup.exe begins to install the upgraded
package.

To avoid unintentionally upgrading, use the Pending view to see which packages have been marked
for upgrading. If you don't want to upgrade a package, click on the new version number to toggle it until
it says Keep. All packages can be set to stay at the installed version by pressing the Keep button in the
top right part of the chooser window.

A previous version of each package is usually available, in case downgrading is required to avoid
a serious bug in the current version of the package. Packages also occasionally have testing (or
"experimental") versions available. Previous and experimental versions can be chosen by clicking on the
package's New column until the required version appears.

All available experimental packages can be selected by pressing the Exp in the top right part of the
chooser window. Be warned, however, that the next time you run setup.exe it will try to replace all old
or experimental versions with the current version, unless told otherwise.

Download and Installation Progress
First, setup.exe will download all selected packages to the local directory chosen earlier. Before
installing, setup.exe performs a checksum on each package. If the local directory is a slow medium
(such as a network drive) this can take a long time. During the download and installation, setup.exe
shows progress bars for the current task and total remaining disk space.

Shortcuts
You may choose to install "Cygwin Terminal" shortcuts on the Desktop and/or Start Menu. These
shortcuts run mintty, which will start your default shell as specified in /etc/passwd.

Post-Install Scripts
Last of all, setup.exe will run any post-install scripts to finish correctly setting up installed packages.
Since each script is run separately, several windows may pop up. If you are interested in what is being
done, see the Cygwin Package Contributor's Guide at http://cygwin.com/setup.html When the last post-
install script is completed, setup.exe will display a box announcing the completion. A few packages,
such as the OpenSSH server, require some manual site-specific configuration. Relevant documentation
can be found in the /usr/doc/Cygwin/ or /usr/share/doc/Cygwin/ directory.

Troubleshooting
Unfortunately, the complex setup process means that odd problems can occur. If you're having trouble
downloading packages, it may be network congestion, so try a different mirror and/or a different

http://cygwin.com/setup.html

Setting Up Cygwin

30

protocol (i.e., HTTP instead of FTP). If you notice something is not working after running setup, you
can check the setup.exe log file at /var/log/setup.log.full. Make a backup of this file before
running setup.exe again, and follow the steps for Reporting Problems with Cygwin [http://cygwin.com/
problems.html].

http://cygwin.com/problems.html
http://cygwin.com/problems.html
http://cygwin.com/problems.html

Setting Up Cygwin

31

Environment Variables

Overview
All Windows environment variables are imported when Cygwin starts. Apart from that, you may wish to
specify settings of several important environment variables that affect Cygwin's operation.

The CYGWIN variable is used to configure a few global settings for the Cygwin runtime system.
Typically you can leave CYGWIN unset, but if you want to set one ore more options, you can set it using
a syntax like this, depending on the shell in which you're setting it. Here is an example in CMD syntax:

C:\> set CYGWIN=error_start:C:\cygwin\bin\gdb.exe glob

This is, of course, just an example. For the recognized settings of the CYGWIN environment variable, see
the section called “The CYGWIN environment variable”.

Locale support is controlled by the LANG and LC_xxx environment variables. Since Cygwin 1.7.2,
all of them are honored and have a meaning. For a more detailed description see the section called
“Internationalization”.

The PATH environment variable is used by Cygwin applications as a list of directories to search
for executable files to run. This environment variable is converted from Windows format (e.g. C:
\Windows\system32;C:\Windows) to UNIX format (e.g., /cygdrive/c/Windows/
system32:/cygdrive/c/Windows) when a Cygwin process first starts. Set it so that it contains
at least the x:\cygwin\bin directory where "x:\cygwin is the "root" of your cygwin installation if
you wish to use cygwin tools outside of bash. This is usually done by the batch file you're starting your
shell with.

The HOME environment variable is used by many programs to determine the location of your home
directory and we recommend that it be defined. This environment variable is also converted from
Windows format when a Cygwin process first starts. It's usually set in the shell profile scripts in the /etc
directory.

The TERM environment variable specifies your terminal type. It is automatically set to cygwin if you
have not set it to something else.

The LD_LIBRARY_PATH environment variable is used by the Cygwin function dlopen () as a
list of directories to search for .dll files to load. This environment variable is converted from Windows
format to UNIX format when a Cygwin process first starts. Most Cygwin applications do not make use
of the dlopen () call and do not need this variable.

In addition to PATH, HOME, and LD_LIBRARY_PATH, there are three other environment variables
which, if they exist in the Windows environment, are converted to UNIX format: TMPDIR, TMP,
and TEMP. The first is not set by default in the Windows environment but the other two are, and they
point to the default Windows temporary directory. If set, these variables will be used by some Cygwin
applications, possibly with unexpected results. You may therefore want to unset them by adding the
following two lines to your ~/.bashrc file:

unset TMP
unset TEMP

This is done in the default ~/.bashrc file. Alternatively, you could set TMP and TEMP to point to /
tmp or to any other temporary directory of your choice. For example:

Setting Up Cygwin

32

export TMP=/tmp
export TEMP=/tmp

Restricted Win32 environment
There is a restriction when calling Win32 API functions which require a fully set up application
environment. Cygwin maintains its own environment in POSIX style. The Win32 environment is
usually stripped to a bare minimum and not at all kept in sync with the Cygwin POSIX environment.

If you need the full Win32 environment set up in a Cygwin process, you have to call

#include <sys/cygwin.h>

cygwin_internal (CW_SYNC_WINENV);

to synchronize the Win32 environment with the Cygwin environment. Note that this only synchronizes
the Win32 environment once with the Cygwin environment. Later changes using the setenv
or putenv calls are not reflected in the Win32 environment. In these cases, you have to call the
aforementioned cygwin_internal call again.

Setting Up Cygwin

33

Changing Cygwin's Maximum Memory
Cygwin's heap is extensible. However, it does start out at a fixed size and attempts to extend it may
run into memory which has been previously allocated by Windows. In some cases, this problem
can be solved by changing a field in the file header which is utilized by Cygwin since version
1.7.10 to keep the initial size of the application heap. If the field contains 0, which is the default, the
application heap defaults to a size of 384 Megabyte. If the field is set to any other value between 4
and 2048, Cygwin tries to reserve as much Megabytes for the application heap. The field used for
this is the "LoaderFlags" field in the NT-specific PE header structure ((IMAGE_NT_HEADER)-
>OptionalHeader.LoaderFlags).

This value can be changed for any executable by using a more recent version of the peflags tool from
the rebase Cygwin package. Example:

$ peflags --cygwin-heap foo.exe
foo.exe: initial Cygwin heap size: 0 (0x0) MB
$ peflags --cygwin-heap=500 foo.exe
foo.exe: initial Cygwin heap size: 500 (0x1f4) MB

Heap memory can be allocated up to the size of the biggest available free block in the processes
virtual memory (VM). By default, the VM per process is 2 GB for 32 processes. To get more VM for a
process, the executable must have the "large address aware" flag set in the file header. You can use the
aforementioned peflags tool to set this flag. On 64 bit systems this results in a 4 GB VM for a process
started from that executable. On 32 bit systems you also have to prepare the system to allow up to 3
GB per process. See the Microsoft article 4-Gigabyte Tuning [http://msdn.microsoft.com/en-us/library/
bb613473%28VS.85%29.aspx] for more information.

Note

Older Cygwin releases only supported a global registry setting to change the initial heap size
for all Cygwin processes. This setting is not used anymore. However, if you're running an
older Cygwin release than 1.7.10, you can add the DWORD value heap_chunk_in_mb and
set it to the desired memory limit in decimal MB. You have to stop all Cygwin processes for
this setting to have any effect. It is preferred to do this in Cygwin using the regtool program
included in the Cygwin package. (see the section called “regtool”) This example sets the
memory limit to 1024 MB for all Cygwin processes (use HKCU instead of HKLM if you want
to set this only for the current user):

$ regtool -i set /HKLM/Software/Cygwin/heap_chunk_in_mb 1024
$ regtool -v list /HKLM/Software/Cygwin

http://msdn.microsoft.com/en-us/library/bb613473%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb613473%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb613473%28VS.85%29.aspx

Setting Up Cygwin

34

Internationalization

Overview
Internationalization support is controlled by the LANG and LC_xxx environment variables. You can set
all of them but Cygwin itself only honors the variables LC_ALL, LC_CTYPE, and LANG, in this order,
according to the POSIX standard. The content of these variables should follow the POSIX standard for a
locale specifier. The correct form of a locale specifier is

 language[[_TERRITORY][.charset][@modifier]]

"language" is a lowercase two character string per ISO 639-1, or, if there is no ISO 639-1 code for the
language (for instance, "Lower Sorbian"), a three character string per ISO 639-3.

"TERRITORY" is an uppercase two character string per ISO 3166, charset is one of a list of supported
character sets. The modifier doesn't matter here (though some are recognized, see below). If you're
interested in the exact description, you can find it in the online publication of the POSIX manual pages
on the homepage of the Open Group [http://www.opengroup.org/].

Typical locale specifiers are

 "de_CH" language = German, territory = Switzerland, default charset
 "fr_FR.UTF-8" language = french, territory = France, charset = UTF-8
 "ko_KR.eucKR" language = korean, territory = South Korea, charset = eucKR
 "syr_SY" language = Syriac, territory = Syria, default charset

If the locale specifier does not follow the above form, Cygwin checks if the locale is one of the locale
aliases defined in the file /usr/share/locale/locale.alias. If so, and if the replacement
localename is supported by the underlying Windows, the locale is accepted, too. So, given the default
content of the /usr/share/locale/locale.alias file, the below examples would be valid
locale specifiers as well.

 "catalan" defined as "ca_ES.ISO-8859-1" in locale.alias
 "japanese" defined as "ja_JP.eucJP" in locale.alias
 "turkish" defined as "tr_TR.ISO-8859-9" in locale.alias

The file /usr/share/locale/locale.alias is provided by the gettext package under Cygwin.

At application startup, the application's locale is set to the default "C" or "POSIX" locale. Under Cygwin
1.7.2 and later, this locale defaults to the ASCII character set on the application level. If you want to
stick to the "C" locale and only change to another charset, you can define this by setting one of the
locale environment variables to "C.charset". For instance

 "C.ISO-8859-1"

Note

The default locale in the absence of the aforementioned locale environment variables is
"C.UTF-8".

Windows uses the UTF-16 charset exclusively to store the names of any object used by the Operating
System. This is especially important with filenames. Cygwin uses the setting of the locale environment

http://www.opengroup.org/
http://www.opengroup.org/

Setting Up Cygwin

35

variables LC_ALL, LC_CTYPE, and LANG, to determine how to convert Windows filenames from their
UTF-16 representation to the singlebyte or multibyte character set used by Cygwin.

The setting of the locale environment variables at process startup is effective for Cygwin's internal
conversions to and from the Windows UTF-16 object names for the entire lifetime of the current
process. Changing the environment variables to another value changes the way filenames are converted
in subsequently started child processes, but not within the same process.

However, even if one of the locale environment variables is set to some other value than "C", this does
only affect how Cygwin itself converts filenames. As the POSIX standard requires, it's the application's
responsibility to activate that locale for its own purposes, typically by using the call

 setlocale (LC_ALL, "");

early in the application code. Again, so that this doesn't get lost: If the application calls setlocale as
above, and there is none of the important locale variables set in the environment, the locale is set to the
default locale, which is "C.UTF-8".

But what about applications which are not locale-aware? Per POSIX, they are running in the "C" or
"POSIX" locale, which implies the ASCII charset. The Cygwin DLL itself, however, will nevertheless
use the locale set in the environment (or the "C.UTF-8" default locale) for converting filenames etc.

When the locale in the environment specifies an ASCII charset, for example "C" or "en_US.ASCII",
Cygwin will still use UTF-8 under the hood to translate filenames. This allows for easier interoperability
with applications running in the default "C.UTF-8" locale.

Starting with Cygwin 1.7.2, the language and territory are used to fetch locale-dependent information
from Windows. If the language and territory are not known to Windows, the setlocale function
fails.

The following modifiers are recognized. Any other modifier is simply ignored for now.

• For locales which use the Euro (EUR) as currency, the modifier "@euro" can be added to enforce
usage of the ISO-8859-15 character set, which includes a character for the "Euro" currency sign.

• The default script used for all Serbian language locales (sr_BA, sr_ME, sr_RS, and the deprecated
sr_CS and sr_SP) is cyrillic. With the "@latin" modifier it gets switched to the latin script with the
respective collation behaviour.

• The default charset of the "be_BY" locale (Belarusian/Belarus) is CP1251. With the "@latin"
modifier it's UTF-8.

• The default charset of the "tt_RU" locale (Tatar/Russia) is ISO-8859-5. With the "@iqtelif" modifier
it's UTF-8.

• The default charset of the "uz_UZ" locale (Uzbek/Uzbekistan) is ISO-8859-1. With the "@cyrillic"
modifier it's UTF-8.

• There's a class of characters in the Unicode character set, called the "CJK Ambiguous Width"
characters. For these characters, the width returned by the wcwidth/wcswidth functions is usually 1.
This can be a problem with East-Asian languages, which historically use character sets where these
characters have a width of 2. Therefore, wcwidth/wcswidth return 2 as the width of these characters
when an East-Asian charset such as GBK or SJIS is selected, or when UTF-8 is selected and the
language is specified as "zh" (Chinese), "ja" (Japanese), or "ko" (Korean). This is not correct in all

Setting Up Cygwin

36

circumstances, hence the locale modifier "@cjknarrow" can be used to force wcwidth/wcswidth to
return 1 for the ambiguous width characters.

How to set the locale
• Assume that you've set one of the aforementioned environment variables to some valid POSIX locale

value, other than "C" and "POSIX". Assume further that you're living in Japan. You might want to
use the language code "ja" and the territory "JP", thus setting, say, LANG to "ja_JP". You didn't set a
character set, so what will Cygwin use now? Starting with Cygwin 1.7.2, the default character set is
determined by the default Windows ANSI codepage for this language and territory. Cygwin uses a
character set which is the typical Unix-equivalent to the Windows ANSI codepage. For instance:

 "en_US" ISO-8859-1
 "el_GR" ISO-8859-7
 "pl_PL" ISO-8859-2
 "pl_PL@euro" ISO-8859-15
 "ja_JP" EUCJP
 "ko_KR" EUCKR
 "te_IN" UTF-8

• You don't want to use the default character set? In that case you have to specify the charset explicitly.
For instance, assume you're from Japan and don't want to use the japanese default charset EUC-JP,
but the Windows default charset SJIS. What you can do, for instance, is to set the LANG variable
in the mintty Cygwin Terminal in the "Text" section of its "Options" dialog. If you're starting your
Cygwin session via a batch file or a shortcut to a batch file, you can also just set LANG there:

 @echo off

 C:
 chdir C:\cygwin\bin
 set LANG=ja_JP.SJIS
 bash --login -i

Note

For a list of locales supported by your Windows machine, use the new locale -a command,
which is part of the Cygwin package. For a description see the section called “locale”

Note

For a list of supported character sets, see the section called “List of supported character sets”

• Last, but not least, most singlebyte or doublebyte charsets have a big disadvantage. Windows
filesystems use the Unicode character set in the UTF-16 encoding to store filename information.
Not all characters from the Unicode character set are available in a singlebyte or doublebyte charset.
While Cygwin has a workaround to access files with unusual characters (see the section called
“Filenames with unusual (foreign) characters”), a better workaround is to use always the UTF-8
character set.

UTF-8 is the only multibyte character set which can represent every Unicode character.

 set LANG=es_MX.UTF-8

For a description of the Unicode standard, see the homepage of the Unicode Consortium [http://
www.unicode.org/].

http://www.unicode.org/
http://www.unicode.org/
http://www.unicode.org/

Setting Up Cygwin

37

The Windows Console character set
Sometimes the Windows console is used to run Cygwin applications. While terminal emulations like the
Cygwin Terminal mintty or xterm have a distinct way to set the character set used for in- and output,
the Windows console hasn't such a way, since it's not an application in its own right.

This problem is solved in Cygwin as follows. When a Cygwin process is started in a Windows
console (either explicitly from cmd.exe, or implicitly by, for instance, running the C:\cygwin
\Cygwin.bat batch file), the Console character set is determined by the setting of the aforementioned
internationalization environment variables, the same way as described in the section called “How to set
the locale”.

What is that good for? Why not switch the console character set with the applications requirements?
After all, the application knows if it uses localization or not. However, what if a non-localized
application calls a remote application which itself is localized? This can happen with ssh or rlogin. Both
commands don't have and don't need localization and they never call setlocale. Setting one of the
internationalization environment variable to the same charset as the remote machine before starting ssh
or rlogin fixes that problem.

Potential Problems when using Locales
You can set the above internationalization variables not only when starting the first Cygwin process, but
also in your Cygwin shell on the fly, even switch to yet another character set, and yet another. In bash
for instance:

 bash$ export LC_CTYPE="nl_BE.UTF-8"

However, here's a problem. At the start of the first Cygwin process in a session, the Windows
environment is converted from UTF-16 to UTF-8. The environment is another of the system objects
stored in UTF-16 in Windows.

As long as the environment only contains ASCII characters, this is no problem at all. But if it contains
native characters, and you're planning to use, say, GBK, the environment will result in invalid characters
in the GBK charset. This would be especially a problem in variables like PATH. To circumvent the
worst problems, Cygwin converts the PATH environment variable to the charset set in the environment,
if it's different from the UTF-8 charset.

Note

Per POSIX, the name of an environment variable should only consist of valid ASCII characters,
and only of uppercase letters, digits, and the underscore for maximum portability.

Symbolic links, too, may pose a problem when switching charsets on the fly. A symbolic link contains
the filename of the target file the symlink points to. When a symlink had been created with older
versions of Cygwin, the current ANSI or OEM character set had been used to store the target filename,
dependent on the old CYGWIN environment variable setting codepage (see the section called
“Obsolete options”. If the target filename contains non-ASCII characters and you use another character
set than your default ANSI/OEM charset, the target filename of the symlink is now potentially an
invalid character sequence in the new character set. This behaviour is not different from the behaviour
in other Operating Systems. So, if you suddenly can't access a symlink anymore which worked all these
years before, maybe it's because you switched to another character set. This doesn't occur with symlinks
created with Cygwin 1.7 or later.

Another problem you might encounter is that older versions of Windows did not install all charsets
by default. If you are running Windows XP or older, you can open the "Regional and Language

Setting Up Cygwin

38

Options" portion of the Control Panel, select the "Advanced" tab, and select entries from the "Code page
conversion tables" list. The following entries are useful to cygwin: 932/SJIS, 936/GBK, 949/EUC-KR,
950/Big5, 20932/EUC-JP.

List of supported character sets
Last but not least, here's the list of currently supported character sets. The left-hand expression is the
name of the charset, as you would use it in the internationalization environment variables as outlined
above. Note that charset specifiers are case-insensitive. EUCJP is equivalent to eucJP or eUcJp.
Writing the charset in the exact case as given in the list below is a good convention, though.

The right-hand side is the number of the equivalent Windows codepage as well as the Windows name of
the codepage. They are only noted here for reference. Don't try to use the bare codepage number or the
Windows name of the codepage as charset in locale specifiers, unless they happen to be identical with
the left-hand side. Especially in case of the "CPxxx" style charsets, always use them with the trailing
"CP".

This works:

 set LC_ALL=en_US.CP437

This does not work:

 set LC_ALL=en_US.437

You can find a full list of Windows codepages on the Microsoft MSDN page Code Page Identifiers
[http://msdn.microsoft.com/en-us/library/dd317756(VS.85).aspx].

 Charset Codepage
 ------------------- ---
 ASCII 20127 (US_ASCII)

 CP437 437 (OEM United States)
 CP720 720 (DOS Arabic)
 CP737 737 (OEM Greek)
 CP775 775 (OEM Baltic)
 CP850 850 (OEM Latin 1, Western European)
 CP852 852 (OEM Latin 2, Central European)
 CP855 855 (OEM Cyrillic)
 CP857 857 (OEM Turkish)
 CP858 858 (OEM Latin 1 + Euro Symbol)
 CP862 862 (OEM Hebrew)
 CP866 866 (OEM Russian)
 CP874 874 (ANSI/OEM Thai)
 CP932 932 (Shift_JIS, not exactly identical to SJIS)
 CP1125 1125 (OEM Ukraine)
 CP1250 1250 (ANSI Central European)
 CP1251 1251 (ANSI Cyrillic)
 CP1252 1252 (ANSI Latin 1, Western European)
 CP1253 1253 (ANSI Greek)
 CP1254 1254 (ANSI Turkish)
 CP1255 1255 (ANSI Hebrew)
 CP1256 1256 (ANSI Arabic)
 CP1257 1257 (ANSI Baltic)
 CP1258 1258 (ANSI/OEM Vietnamese)

 ISO-8859-1 28591 (ISO-8859-1)

http://msdn.microsoft.com/en-us/library/dd317756(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd317756(VS.85).aspx

Setting Up Cygwin

39

 ISO-8859-2 28592 (ISO-8859-2)
 ISO-8859-3 28593 (ISO-8859-3)
 ISO-8859-4 28594 (ISO-8859-4)
 ISO-8859-5 28595 (ISO-8859-5)
 ISO-8859-6 28596 (ISO-8859-6)
 ISO-8859-7 28597 (ISO-8859-7)
 ISO-8859-8 28598 (ISO-8859-8)
 ISO-8859-9 28599 (ISO-8859-9)
 ISO-8859-10 - (not available)
 ISO-8859-11 - (not available)
 ISO-8859-13 28603 (ISO-8859-13)
 ISO-8859-14 - (not available)
 ISO-8859-15 28605 (ISO-8859-15)
 ISO-8859-16 - (not available)

 Big5 950 (ANSI/OEM Traditional Chinese)
 EUCCN or euc-CN 936 (ANSI/OEM Simplified Chinese)
 EUCJP or euc-JP 20932 (EUC Japanese)
 EUCKR or euc-KR 949 (EUC Korean)
 GB2312 936 (ANSI/OEM Simplified Chinese)
 GBK 936 (ANSI/OEM Simplified Chinese)
 GEORGIAN-PS - (not available)
 KOI8-R 20866 (KOI8-R Russian Cyrillic)
 KOI8-U 21866 (KOI8-U Ukrainian Cyrillic)
 PT154 - (not available)
 SJIS - (not available, almost, but not exactly CP932)
 TIS620 or TIS-620 874 (ANSI/OEM Thai)

 UTF-8 or utf8 65001 (UTF-8)

Setting Up Cygwin

40

Customizing bash
To set up bash so that cut and paste work properly, click on the "Properties" button of the window, then
on the "Misc" tab. Make sure that "QuickEdit mode" and "Insert mode" are checked. These settings
will be remembered next time you run bash from that shortcut. Similarly you can set the working
directory inside the "Program" tab. The entry "%HOME%" is valid, but requires that you set HOME in
the Windows environment.

Your home directory should contain three initialization files that control the behavior of bash. They are
.profile, .bashrc and .inputrc. The Cygwin base installation creates stub files when you start
bash for the first time.

.profile (other names are also valid, see the bash man page) contains bash commands. It is executed
when bash is started as login shell, e.g. from the command bash --login. This is a useful place to define
and export environment variables and bash functions that will be used by bash and the programs invoked
by bash. It is a good place to redefine PATH if needed. We recommend adding a ":." to the end of PATH
to also search the current working directory (contrary to DOS, the local directory is not searched by
default). Also to avoid delays you should either unset MAILCHECK or define MAILPATH to point to
your existing mail inbox.

.bashrc is similar to .profile but is executed each time an interactive bash shell is launched. It
serves to define elements that are not inherited through the environment, such as aliases. If you do not
use login shells, you may want to put the contents of .profile as discussed above in this file instead.

shopt -s nocaseglob

will allow bash to glob filenames in a case-insensitive manner. Note that .bashrc is not called
automatically for login shells. You can source it from .profile.

.inputrc controls how programs using the readline library (including bash) behave. It is loaded
automatically. For full details see the Function and Variable Index section of the GNU
readline manual. Consider the following settings:

Ignore case while completing
set completion-ignore-case on
Make Bash 8bit clean
set meta-flag on
set convert-meta off
set output-meta on

The first command makes filename completion case insensitive, which can be convenient in a Windows
environment. The next three commands allow bash to display 8-bit characters, useful for languages with
accented characters. Note that tools that do not use readline for display, such as less and ls, require
additional settings, which could be put in your .bashrc:

alias less='/bin/less -r'
alias ls='/bin/ls -F --color=tty --show-control-chars'

41

Chapter 3. Using Cygwin
This chapter explains some key differences between the Cygwin environment and traditional UNIX
systems. It assumes a working knowledge of standard UNIX commands.

Using Cygwin

42

Mapping path names

Introduction
Cygwin supports both POSIX- and Win32-style paths. Directory delimiters may be either forward
slashes or backslashes. Paths using backslashes or starting with a drive letter are always handled as
Win32 paths. POSIX paths must only use forward slashes as delimiter, otherwise they are treated as
Win32 paths and file access might fail in surprising ways.

Note

The usage of Win32 paths, though possible, is deprecated, since it circumvents important
internal path handling mechanisms. See the section called “Using native Win32 paths” and the
section called “Using the Win32 file API in Cygwin applications” for more information.

POSIX operating systems (such as Linux) do not have the concept of drive letters. Instead, all
absolute paths begin with a slash (instead of a drive letter such as "c:") and all file systems appear as
subdirectories (for example, you might buy a new disk and make it be the /disk2 directory).

Because many programs written to run on UNIX systems assume the existence of a single unified
POSIX file system structure, Cygwin maintains a special internal POSIX view of the Win32 file system
that allows these programs to successfully run under Windows. Cygwin uses this mapping to translate
from POSIX to Win32 paths as necessary.

The Cygwin Mount Table
The /etc/fstab file is used to map Win32 drives and network shares into Cygwin's internal POSIX
directory tree. This is a similar concept to the typical UNIX fstab file. The mount points stored in /
etc/fstab are globally set for all users. Sometimes there's a requirement to have user specific mount
points. The Cygwin DLL supports user specific fstab files. These are stored in the directory /etc/
fstab.d and the name of the file is the Cygwin username of the user, as it's created from the Windows
account database or stored in the /etc/passwd file (see the section called “Mapping Windows
accounts to POSIX accounts”). The structure of the user specific file is identical to the system-wide
fstab file.

The file fstab contains descriptive information about the various file systems. fstab is only read by
programs, and not written; it is the duty of the system administrator to properly create and maintain this
file. Each filesystem is described on a separate line; fields on each line are separated by tabs or spaces.
Lines starting with '#' are comments.

The first field describes the block special device or remote filesystem to be mounted. On Cygwin, this
is the native Windows path which the mount point links in. As path separator you MUST use a slash.
Usage of a backslash might lead to unexpected results. UNC paths (using slashes, not backslashes) are
allowed. If the path contains spaces these can be escaped as '\040'.

The second field describes the mount point for the filesystem. If the name of the mount point contains
spaces these can be escaped as '\040'.

The third field describes the type of the filesystem. Cygwin supports any string here, since the file
system type is usually not evaluated. So it doesn't matter if you write FAT into this field even if the
filesystem is NTFS. Cygwin figures out the filesystem type and its capabilities by itself.

The only exception is the file system type cygdrive. This type is used to set the cygdrive prefix. For a
description of the cygdrive prefix see the section called “The cygdrive path prefix”

Using Cygwin

43

The fourth field describes the mount options associated with the filesystem. It is formatted as a comma
separated list of options. It contains at least the type of mount (binary or text) plus any additional options
appropriate to the filesystem type. Recognized options are binary, text, nouser, user, exec, notexec,
cygexec, nosuid, posix=[0|1]. The meaning of the options is as follows.

 acl - Cygwin uses the filesystem's access control lists (ACLs) to
 implement real POSIX permissions (default). This flag only
 affects filesystems supporting ACLs (NTFS, for instance) and
 is ignored otherwise.
 auto - Ignored.
 binary - Files default to binary mode (default).
 bind - Allows to remount part of the file hierarchy somewhere else.
 In contrast to other entries, the first field in the fstab
 line specifies an absolute POSIX path. This path is remounted
 to the POSIX path specified as the second path. The conversion
 to a Win32 path is done on the fly. Only the root path and
 paths preceding the bind entry in the fstab file are used to
 convert the POSIX path in the first field to an absolute Win32
 path. Note that symlinks are ignored while performing this path
 conversion.
 cygexec - Treat all files below mount point as cygwin executables.
 dos - Always convert leading spaces and trailing dots and spaces to
 characters in the UNICODE private use area. This allows to use
 broken filesystems which only allow DOS filenames, even if they
 are not recognized as such by Cygwin.
 exec - Treat all files below mount point as executable.
 ihash - Always fake inode numbers rather than using the ones returned
 by the filesystem. This allows to use broken filesystems which
 don't return unambiguous inode numbers, even if they are not
 recognized as such by Cygwin.
 noacl - Cygwin ignores filesystem ACLs and only fakes a subset of
 permission bits based on the DOS readonly attribute. This
 behaviour is the default on FAT and FAT32. The flag is
 ignored on NFS filesystems.
 nosuid - No suid files are allowed (currently unimplemented).
 notexec - Treat all files below mount point as not executable.
 nouser - Mount is a system-wide mount.
 override - Force the override of an immutable mount point (currently "/").
 posix=0 - Switch off case sensitivity for paths under this mount point
 (default for the cygdrive prefix).
 posix=1 - Switch on case sensitivity for paths under this mount point
 (default for all other mount points).
 sparse - Switch on support for sparse files. This option only makes
 sense on NTFS and then only if you really need sparse files.
 Cygwin does not try to create sparse files by default for
 performance reasons.
 text - Files default to CRLF text mode line endings.
 user - Mount is a user mount.

While normally the execute permission bits are used to evaluate executability, this is not possible
on filesystems which don't support permissions at all (like FAT/FAT32), or if ACLs are ignored
on filesystems supporting them (see the aforementioned acl mount option). In these cases, the
following heuristic is used to evaluate if a file is executable: Files ending in certain extensions
(.exe, .com, .bat, .btm, .cmd) are assumed to be executable. Files whose first two characters begin
with '#!' are also considered to be executable. The exec option is used to instruct Cygwin that the
mounted file is "executable". If the exec option is used with a directory then all files in the directory
are executable. This option allows other files to be marked as executable and avoids the overhead of
opening each file to check for a '#!'. The cygexec option is very similar to exec, but also prevents
Cygwin from setting up commands and environment variables for a normal Windows program, adding

Using Cygwin

44

another small performance gain. The opposite of these options is the notexec option, which means
that no files should be marked as executable under that mount point.

A correct root directory is quite essential to the operation of Cygwin. A default root directory is
evaluated at startup so a fstab entry for the root directory is not necessary. If it's wrong, nothing will
work as expected. Therefore, the root directory evaluated by Cygwin itself is treated as an immutable
mount point and can't be overridden in /etc/fstab... unless you think you really know what you're doing.
In this case, use the override flag in the options field in the /etc/fstab file. Since this is a
dangerous thing to do, do so at your own risk.

/usr/bin and /usr/lib are by default also automatic mount points generated by the Cygwin DLL
similar to the way the root directory is evaluated. /usr/bin points to the directory the Cygwin DLL
is installed in, /usr/lib is supposed to point to the /lib directory. This choice is safe and usually
shouldn't be changed. An fstab entry for them is not required.

nouser mount points are not overridable by a later call to mount. Mount points given in /etc/
fstab are by default nouser mount points, unless you specify the option user. This allows the
administrator to set certain paths so that they are not overridable by users. In contrast, all mount points
in the user specific fstab file are user mount points.

The fifth and sixth field are ignored. They are so far only specified to keep a Linux-like fstab file layout.

Note that you don't have to specify an fstab entry for the root dir, unless you want to have the root dir
pointing to somewhere entirely different (hopefully you know what you're doing), or if you want to
mount the root dir with special options (for instance, as text mount).

Example entries:

• Just a normal mount point:

 c:/foo /bar fat32 binary 0 0

• A mount point for a textmode mount with case sensitivity switched off:

 C:/foo /bar/baz ntfs text,posix=0 0 0

• A mount point for a Windows directory with spaces in it:

 C:/Documents\040and\040Settings /docs ext3 binary 0 0

• A mount point for a remote directory, don't store POSIX permissions in ACLs:

 //server/share/subdir /srv/subdir smbfs binary,noacl 0 0

• This is just a comment:

 # This is just a comment

• Set the cygdrive prefix to /mnt:

 none /mnt cygdrive binary 0 0

• Remount /var to /usr/var:

 /var /usr/var none bind

Assuming /var points to C:/cygwin/var, /usr/var now also points to C:/cygwin/var.
This is equivalent to the Linux bind option available since Linux 2.4.0.

Whenever Cygwin generates a Win32 path from a POSIX one, it uses the longest matching prefix in the
mount table. Thus, if C: is mounted as /c and also as /, then Cygwin would translate C:/foo/bar
to /c/foo/bar. This translation is normally only used when trying to derive the POSIX equivalent
current directory. Otherwise, the handling of MS-DOS filenames bypasses the mount table.

Using Cygwin

45

If you want to see the current set of mount points valid in your session, you can invoke the Cygwin tool
mount without arguments:

Example 3.1. Displaying the current set of mount points

 bash$ mount
 f:/cygwin/bin on /usr/bin type ntfs (binary,auto)
 f:/cygwin/lib on /usr/lib type ntfs (binary,auto)
 f:/cygwin on / type ntfs (binary,auto)
 e:/src on /usr/src type vfat (binary)
 c: on /cygdrive/c type ntfs (binary,posix=0,user,noumount,auto)
 e: on /cygdrive/e type vfat (binary,posix=0,user,noumount,auto)

You can also use the mount command to add new mount points, and the umount to delete them.
However, since they are only stored in memory, these mount points will disappear as soon as your
last Cygwin process ends. See the section called “mount” and the section called “umount” for more
information.

Note

When you upgrade an existing older Cygwin installation to Cygwin 1.7, your old system mount
points (stored in the HKEY_LOCAL_MACHINE branch of your registry) are read by a script
and the /etc/fstab file is generated from these entries. Note that entries for /, /usr/bin,
and /usr/lib are never generated.

The old user mount points in your HKEY_CURRENT_USER branch of the registry are not
used to generate /etc/fstab. If you want to create a user specific /etc/fstab.d/
${USER} file from your old entries, there's a script available which does exactly that for you,
/bin/copy-user-registry-fstab. Just start the script and it will create your user
specific fstab file. Stop all your Cygwin processes and restart them, and you can simply use
your old user mount points as before.

UNC paths
Apart from the unified POSIX tree starting at the / directory, UNC pathnames starting with two
slashes and a server name (//machine/share/...) are supported as well. They are handled as
POSIX paths if only containing forward slashes. There's also a virtual directory // which allows to
enumerate the fileservers known to the local machine with ls. Same goes for the UNC paths of the type
//machine, which allow to enumerate the shares provided by the server machine. For often used
UNC paths it makes sense to add them to the mount table (see the section called “The Cygwin Mount
Table” so they are included in the unified POSIX path tree.

The cygdrive path prefix
As already outlined in the section called “File Access”, you can access arbitary drives on your system by
using the cygdrive path prefix. The default value for this prefix is /cygdrive, and a path to any drive
can be constructed by using the cygdrive prefix and appending the drive letter as subdirectory, like this:

 bash$ ls -l /cygdrive/f/somedir

This lists the content of the directory F:\somedir.

The cygdrive prefix is a virtual directory under which all drives on a system are subsumed. The mount
options of the cygdrive prefix is used for all file access through the cygdrive prefixed drives. For
instance, assuming the cygdrive mount options are binary,posix=0, then any file /cygdrive/x/

Using Cygwin

46

file will be opened in binary mode by default (mount option binary), and the case of the filename
doesn't matter (mount option posix=0).

The cygdrive prefix flags are also used for all UNC paths starting with two slashes, unless they are
accessed through a mount point. For instance, consider these /etc/fstab entries:

 //server/share /mysrv ntfs posix=1,acl 0 0
 none /cygdrive cygdrive posix=0,noacl 0 0

Assume there's a file \\server\share\foo on the share. When accessing it as /mysrv/foo,
then the flags posix=1,acl of the /mysrv mount point are used. When accessing it as //server/
share/foo, then the flags for the cygdrive prefix, posix=0,noacl are used.

Note

This only applies to UNC paths using forward slashes. When using backslashes the flags for
native paths are used. See the section called “Using native Win32 paths”.

The cygdrive prefix may be changed in the fstab file as outlined above. Please note that you must not
use the cygdrive prefix for any other mount point. For instance this:

 none /cygdrive cygdrive binary 0 0
 D: /cygdrive/d somefs text 0 0

will not make file access using the /mnt/d path prefix suddenly using textmode. If you want to mount
any drive explicitly in another mode than the cygdrive prefix, use a distinct path prefix:

 none /cygdrive cygdrive binary 0 0
 D: /mnt/d somefs text 0 0

To simplify scripting, Cygwin also provides a /proc/cygdrive symlink, which allows to use a fixed
path in scripts, even if the actual cygdrive prefix has been changed, or is different between different
users. So, in scripts, conveniently use the /proc/cygdrive symlink to successfully access files
independently from the current cygdrive prefix:

 $ mount -p
 Prefix Type Flags
 /mnt user binmode
 $ cat > x.sh <<EOF
 cd /proc/cygdrive/c/Windows/System32/Drivers/etc
 ls -l hosts
 EOF
 $ sh -c ./x.sh
 -rwxrwx---+ 1 SYSTEM SYSTEM 826 Sep 4 22:43 hosts

Symbolic links
Symbolic links are not present and supported on Windows until Windows Vista/Server 2008, and then
only on some filesystems. Since POSIX applications are rightfully expecting to use symlinks and the
symlink(2) system call, Cygwin had to find a workaround for this Windows flaw.

Cygwin creates symbolic links potentially in multiple different ways:

• The default symlinks are plain files containing a magic cookie followed by the path to which the link
points. They are marked with the DOS SYSTEM attribute so that only files with that attribute have to
be read to determine whether or not the file is a symbolic link.

Using Cygwin

47

Note

Starting with Cygwin 1.7, symbolic links are using UTF-16 to encode the filename of the
target file, to better support internationalization. Symlinks created by older Cygwin releases
can be read just fine. However, you could run into problems with them if you're now using
another character set than the one you used when creating these symlinks (see the section
called “Potential Problems when using Locales”). Please note that this new UTF-16 style of
symlinks is not compatible with older Cygwin release, which can't read the target filename
correctly.

• The shortcut style symlinks are Windows .lnk shortcut files with a special header and the DOS
READONLY attribute set. This symlink type is created if the environment variable CYGWIN (see
the section called “The CYGWIN environment variable”) is set to contain the string winsymlinks
or winsymlinks:lnk. On the MVFS filesystem, which does not support the DOS SYSTEM
attribute, this is the one and only supported symlink type, independently from the winsymlinks
setting.

• Native Windows symlinks are only created on Windows Vista/2008 and later, and only on filesystems
supporting reparse points. Due to to their weird restrictions and behaviour, they are only created if
the user explicitely requests creating them. This is done by setting the environment variable CYGWIN
to contain the string winsymlinks:native or winsymlinks:nativestrict. For the
difference between these two settings, see the section called “The CYGWIN environment variable”.
On AFS, native symlinks are the only supported type of symlink due to AFS lacking support for DOS
attributes. This is independent from the winsymlinks setting.

• On the NFS filesystem, Cygwin always creates real NFS symlinks.

All of the above four symlink types are recognized and used as symlinks under all circumstances.
However, if the default plain file symlink type is lacking its DOS SYSTEM bit, or if the shortcut file is
lacking the DOS READONLY attribute, they are not recognized as symlink.

Apart from these four types, there's also a fifth type, which is recognized as symlink but never generated
by Cygwin, directory junctions. This is an older reparse point type, supported by Windows since
Windows 2000. Filesystem junctions on the other hand are not handled as symlinks, since otherwise
they would not be recognized as filesystem borders by commands like find -xdev.

Using native Win32 paths
Using native Win32 paths in Cygwin, while possible, is generally inadvisable. Those paths circumvent
all internal integrity checking and bypass the information given in the Cygwin mount table.

The following paths are treated as native Win32 paths in Cygwin:

• All paths starting with a drive specifier

 C:\foo
 C:/foo

• All paths containing at least one backslash as path component

 C:/foo/bar\baz/...

• UNC paths using backslashes

 \\server\share\...

Using Cygwin

48

When accessing files using native Win32 paths as above, Cygwin uses a default setting for the mount
flags. All paths using DOS notation will be treated as case insensitive, and permissions are just faked as
if the underlying drive is a FAT drive. This also applies to NTFS and other filesystems which usually
are capable of case sensitivity and storing permissions.

Using the Win32 file API in Cygwin applications
Special care must be taken if your application uses Win32 file API functions like CreateFile to
access files using relative pathnames, or if your application uses functions like CreateProcess or
ShellExecute to start other applications.

When a Cygwin application is started, the Windows idea of the current working directory (CWD) is not
necessarily the same as the Cygwin CWD. There are a couple of restrictions in the Win32 API, which
disallow certain directories as Win32 CWD:

• The Windows subsystem only supports CWD paths of up to 258 chars. This restriction doesn't apply
for Cygwin processes, at least not as long as they use the POSIX API (chdir, getcwd). This means, if a
Cygwin process has a CWD using an absolute path longer than 258 characters, the Cygwin CWD and
the Windows CWD differ.

• The Win32 API call to set the current directory, SetCurrentDirectory, fails for directories for
which the user has no permissions, even if the user is an administrator. This restriction doesn't apply
for Cygwin processes, if they are running under an administrator account.

• SetCurrentDirectory does not support case-sensitive filenames.
• Last, but not least, SetCurrentDirectory can't work on virtual Cygwin paths like /proc or /

cygdrive. These paths only exists in the Cygwin realm so they have no meaning to a native Win32
process.

As long as the Cygwin CWD is usable as Windows CWD, the Cygwin and Windows CWDs are in
sync within a process. However, if the Cygwin process changes its working directory into one of the
directories which are unusable as Windows CWD, we're in trouble. If the process uses the Win32 API to
access a file using a relative pathname, the resulting absolute path would not match the expectations of
the process. In the worst case, the wrong files are deleted.

To workaround this problem, Cygwin sets the Windows CWD to a special directory in this case.
This special directory points to a virtual filesystem within the native NT namespace (\??\PIPE
\). Since it's not a real filesystem, the deliberate effect is that a call to, for instance, CreateFile
("foo", ...); will fail, as long as the processes CWD doesn't work as Windows CWD.

So, in general, don't use the Win32 file API in Cygwin applications. If you really need to access files
using the Win32 API, or if you really have to use CreateProcess to start applications, rather than
the POSIX exec(3) family of functions, you have to make sure that the Cygwin CWD is set to some
directory which is valid as Win32 CWD.

Additional Path-related Information
The cygpath program provides the ability to translate between Win32 and POSIX pathnames in shell
scripts. See the section called “cygpath” for the details.

The HOME, PATH, and LD_LIBRARY_PATH environment variables are automatically converted from
Win32 format to POSIX format (e.g. from c:/cygwin\bin to /bin, if there was a mount from that
Win32 path to that POSIX path) when a Cygwin process first starts.

Symbolic links can also be used to map Win32 pathnames to POSIX. For example, the command ln -
s //pollux/home/joe/data /data would have about the same effect as creating a mount point from //

Using Cygwin

49

pollux/home/joe/data to /data using mount, except that symbolic links cannot set the default
file access mode. Other differences are that the mapping is distributed throughout the file system and
proceeds by iteratively walking the directory tree instead of matching the longest prefix in a kernel table.
Note that symbolic links will only work on network drives that are properly configured to support the
"system" file attribute. Many do not do so by default (the Unix Samba server does not by default, for
example).

Using Cygwin

50

Text and Binary modes

The Issue
On a UNIX system, when an application reads from a file it gets exactly what's in the file on disk and
the converse is true for writing. The situation is different in the DOS/Windows world where a file can be
opened in one of two modes, binary or text. In the binary mode the system behaves exactly as in UNIX.
However on writing in text mode, a NL (\n, ^J) is transformed into the sequence CR (\r, ^M) NL.

This can wreak havoc with the seek/fseek calls since the number of bytes actually in the file may differ
from that seen by the application.

The mode can be specified explicitly as explained in the Programming section below. In an ideal DOS/
Windows world, all programs using lines as records (such as bash, make, sed ...) would open files (and
change the mode of their standard input and output) as text. All other programs (such as cat, cmp, tr ...)
would use binary mode. In practice with Cygwin, programs that deal explicitly with object files specify
binary mode (this is the case of od, which is helpful to diagnose CR problems). Most other programs
(such as sed, cmp, tr) use the default mode.

The default Cygwin behavior
The Cygwin system gives us some flexibility in deciding how files are to be opened when the mode is
not specified explicitly. The rules are evolving, this section gives the design goals.

a. If the filename is specified as a POSIX path and it appears to reside on a file system that is mounted
(i.e. if its pathname starts with a directory displayed by mount), then the default is specified by the
mount flag. If the file is a symbolic link, the mode of the target file system applies.

b. If the file is specified via a MS-DOS pathname (i.e., it contains a backslash or a colon), the default is
binary.

c. Pipes, sockets and non-file devices are opened in binary mode. For pipes opened through the pipe()
system call you can use the setmode() function (see the section called “Programming” to switch to
textmode. For pipes opened through popen(), you can simply specify text or binary mode just like in
calls to fopen().

d. Sockets and other non-file devices are always opened in binary mode.

e. When redirecting, the Cygwin shells uses rules (a-d). Non-Cygwin shells always pipe and redirect
with binary mode. With non-Cygwin shells the commands cat filename | program and program <
filename are not equivalent when filename is on a text-mounted partition.

The programs u2d and d2u can be used to add or remove CR's from a file. u2d add's CR's before a
NL. d2u removes CR's. Use the --help option to these commands for more information.

Binary or text?
UNIX programs that have been written for maximum portability will know the difference between text
and binary files and act appropriately under Cygwin. Most programs included in the official Cygwin
distributions should work well in the default mode.

Binmode is the best choice usually since it's faster and easier to handle, unless you want to exchange
files with native Win32 applications. It makes most sense to keep the Cygwin distribution and your

Using Cygwin

51

Cygwin home directory in binmode and generate text files in binmode (with UNIX LF lineendings).
Most Windows applications can handle binmode files just fine. A notable exception is the mini-editor
Notepad, which handles UNIX lineendings incorrectly and only produces output files with DOS CRLF
lineendings.

You can convert files between CRLF and LF lineendings by using certain tools in the Cygwin
distribution like d2u and u2d from the cygutils package. You can also specify a directory in the mount
table to be mounted in textmode so you can use that directory for exchange purposes.

As application programmer you can decide on a file by file base, or you can specify default open modes
depending on the purpose for which the application open files. See the next section for a description of
your choices.

Programming
In the open() function call, binary mode can be specified with the flag O_BINARY and text mode with
O_TEXT. These symbols are defined in fcntl.h.

The mkstemp() and mkstemps() calls force binary mode. Use mkostemp() or mkostemps()
with the same flags as open() for more control on temporary files.

In the fopen() and popen() function calls, binary mode can be specified by adding a b to the mode
string. Text mode is specified by adding a t to the mode string.

The mode of a file can be changed by the call setmode(fd,mode) where fd is a file descriptor (an
integer) and mode is O_BINARY or O_TEXT. The function returns O_BINARY or O_TEXT depending
on the mode before the call, and EOF on error.

There's also a convenient way to set the default open modes used in an application by just linking
against various object files provided by Cygwin. For instance, if you want to make sure that all files are
always opened in binary mode by an application, regardless of the mode of the underlying mount point,
just add the file /lib/binmode.o to the link stage of the application in your project, like this:

 $ gcc my_tiny_app.c /lib/binmode.o -o my_tiny_app

Starting with Cygwin 1.7.7, you can use the even simpler:

 $ gcc my_tiny_app.c -lbinmode -o my_tiny_app

This adds code which sets the default open mode for all files opened by my_tiny_app to binary for
reading and writing.

Cygwin provides the following libraries and object files to set the default open mode just by linking an
application against them:

•
/lib/libautomode.a - Open files for reading in textmode,
/lib/automode.o open files for writing in binary mode

•
/lib/libbinmode.a - Open files for reading and writing in binary mode
/lib/binmode.o

•
/lib/libtextmode.a - Open files for reading and writing in textmode
/lib/textmode.o

Using Cygwin

52

•
/lib/libtextreadmode.a - Open files for reading in textmode,
/lib/textreadmode.o keep default behaviour for writing.

Using Cygwin

53

File permissions
On FAT or FAT32 filesystems, files are always readable, and Cygwin uses the DOS read-only
attribute to determine if they are writable. Files are considered to be executable if the filename ends
with .bat, .com or .exe, or if its content starts with #!. Consequently chmod can only affect the "w"
mode, it silently ignores actions involving the other modes. This means that ls -l needs to open and read
files. It can thus be relatively slow.

On NTFS, file permissions are evaluated using the Access Control Lists (ACLs) attached to a file. This
can be switched off by using the "noacl" option to the respective mount point in the /etc/fstab or /
etc/fstab.d/$USER file. For more information on file permissions, see the section called “POSIX
accounts, permission, and security”.

On NFS shares, file permissions are exactly the POSIX permissions transmitted from the server using
the NFSv3 protocol, if the NFS client is the one from Microsoft's "Services For Unix", or the one built
into Windows Vista or later.

Only the user and group ownership is not necessarily correct.

Using Cygwin

54

Special filenames

Special files in /etc
Certain files in Cygwin's /etc directory are read by Cygwin before the mount table has been
established. The list of files is

 /etc/fstab
 /etc/fstab.d/$USER
 /etc/passwd
 /etc/group

These file are read using native Windows NT functions which have no notion of Cygwin symlinks or
POSIX paths. For that reason there are a few requirements as far as /etc is concerned.

To access these files, the Cygwin DLL evaluates it's own full Windows path, strips off the innermost
directory component and adds "\etc". Let's assume the Cygwin DLL is installed as C:\cygwin\bin
\cygwin1.dll. First the DLL name as well as the innermost directory (bin) is stripped off: C:
\cygwin\. Then "etc" and the filename to look for is attached: C:\cygwin\etc\fstab. So the /
etc directory must be parallel to the directory in which the cygwin1.dll exists and /etc must not be a
Cygwin symlink pointing to another directory. Consequentially none of the files from the above list,
including the directory /etc/fstab.d is allowed to be a Cygwin symlink either.

However, native NTFS symlinks and reparse points are transparent when accessing the above files so all
these files as well as /etc itself may be NTFS symlinks or reparse points.

Last but not least, make sure that these files are world-readable. Every process of any user account has
to read these files potentially, so world-readability is essential. The only exception are the user specific
files /etc/fstab.d/$USER, which only have to be readable by the $USER user account itself.

Invalid filenames
Filenames invalid under Win32 are not necessarily invalid under Cygwin since release 1.7.0. There are
a few rules which apply to Windows filenames. Most notably, DOS device names like AUX, COM1,
LPT1 or PRN (to name a few) cannot be used as filename or extension in a native Win32 application. So
filenames like prn.txt or foo.aux are invalid filenames for native Win32 applications.

This restriction doesn't apply to Cygwin applications. Cygwin can create and access files with such
names just fine. Just don't try to use these files with native Win32 applications.

Forbidden characters in filenames
Some characters are disallowed in filenames on Windows filesystems. These forbidden characters are
the ASCII control characters from ASCII value 1 to 31, plus the following characters which have a
special meaning in the Win32 API:

 " * : < > ? | \

Cygwin can't fix this, but it has a method to workaround this restriction. All of the above characters,
except for the backslash, are converted to special UNICODE characters in the range 0xf000 to 0xf0ff
(the "Private use area") when creating or accessing files.

Using Cygwin

55

The backslash has to be exempt from this conversion, because Cygwin accepts Win32 filenames
including backslashes as path separators on input. Converting backslashes using the above method
would make this impossible.

Additionally Win32 filenames can't contain trailing dots and spaces for DOS backward compatibility.
When trying to create files with trailing dots or spaces, all of them are removed before the file is created.
This restriction only affects native Win32 applications. Cygwin applications can create and access files
with trailing dots and spaces without problems.

An exception from this rule are some network filesystems (NetApp, NWFS) which choke on these
filenames. They return with an error like "No such file or directory" when trying to create such files.
Starting with Cygwin 1.7.6, Cygwin recognizes these filesystems and works around this problem by
applying the same rule as for the other forbidden characters. Leading spaces and trailing dots and spaces
will be converted to UNICODE characters in the private use area. This behaviour can be switched on
explicitely for a filesystem or a directory tree by using the mount option dos.

Filenames with unusual (foreign) characters
Windows filesystems use Unicode encoded as UTF-16 to store filename information. If you don't
use the UTF-8 character set (see the section called “Internationalization”) then there's a chance that a
filename is using one or more characters which have no representation in the character set you're using.

Note

In the default "C" locale, Cygwin creates filenames using the UTF-8 charset. This will always
result in some valid filename by default, but again might impose problems when switching to a
non-"C" or non-"UTF-8" charset.

Note

To avoid this scenario altogether, always use UTF-8 as the character set.

If you don't want or can't use UTF-8 as character set for whatever reason, you will nevertheless be
able to access the file. How does that work? When Cygwin converts the filename from UTF-16 to
your character set, it recognizes characters which can't be converted. If that occurs, Cygwin replaces
the non-convertible character with a special character sequence. The sequence starts with an ASCII
CAN character (hex code 0x18, equivalent Control-X), followed by the UTF-8 representation of the
character. The result is a filename containing some ugly looking characters. While it doesn't look nice,
it is nice, because Cygwin knows how to convert this filename back to UTF-16. The filename will be
converted using your usual character set. However, when Cygwin recognizes an ASCII CAN character,
it skips over the ASCII CAN and handles the following bytes as a UTF-8 character. Thus, the filename
is symmetrically converted back to UTF-16 and you can access the file.

Note

Please be aware that this method is not entirely foolproof. In some character set combinations it
might not work for certain native characters.

Only by using the UTF-8 charset you can avoid this problem safely.

Case sensitive filenames
In the Win32 subsystem filenames are only case-preserved, but not case-sensitive. You can't access two
files in the same directory which only differ by case, like Abc and aBc. While NTFS (and some remote

Using Cygwin

56

filesystems) support case-sensitivity, the NT kernel starting with Windows XP does not support it by
default. Rather, you have to tweak a registry setting and reboot. For that reason, case-sensitivity can not
be supported by Cygwin, unless you change that registry value.

If you really want case-sensitivity in Cygwin, you can switch it on by setting the registry value

HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\kernel\obcaseinsensitive

to 0 and reboot the machine.

Note

When installing Microsoft's Services For Unix (SFU), you're asked if you want to use
case-sensitive filenames. If you answer "yes" at this point, the installer will change the
aforementioned registry value to 0, too. So, if you have SFU installed, there's some chance that
the registry value is already set to case sensitivity.

After you set this registry value to 0, Cygwin will be case-sensitive by default on NTFS and NFS
filesystems. However, there are limitations: while two programs Abc.exe and aBc.exe can be
created and accessed like other files, starting applications is still case-insensitive due to Windows
limitations and so the program you try to launch may not be the one actually started. Also, be aware that
using two filenames which only differ by case might result in some weird interoperability issues with
native Win32 applications. You're using case-sensitivity at your own risk. You have been warned!

Even if you use case-sensitivity, it might be feasible to switch to case-insensitivity for certain paths for
better interoperability with native Win32 applications (even if it's just Windows Explorer). You can do
this on a per-mount point base, by using the "posix=0" mount option in /etc/fstab, or your /etc/
fstab.d/$USER file.

/cygdrive paths are case-insensitive by default. The reason is that the native Windows %PATH%
environment variable is not always using the correct case for all paths in it. As a result, if you use case-
sensitivity on the /cygdrive prefix, your shell might claim that it can't find Windows commands like
attrib or net. To ease the pain, the /cygdrive path is case-insensitive by default and you have to use
the "posix=1" setting explicitly in /etc/fstab or /etc/fstab.d/$USER to switch it to case-
sensitivity, or you have to make sure that the native Win32 %PATH% environment variable is using the
correct case for all paths throughout.

Note that mount points as well as device names and virtual paths like /proc are always case-sensitive!
The only exception are the subdirectories and filenames under /proc/registry, /proc/registry32 and /proc/
registry64. Registry access is always case-insensitive. Read on for more information.

POSIX devices
While there is no need to create a POSIX /dev directory, the directory is automatically created as part
of a Cygwin installation. It's existence is often a prerequisit to run certain applications which create
symbolic links, fifos, or UNIX sockets in /dev. Also, the directories /dev/shm and /dev/mqueue
are required to exist to use named POSIX semaphores, shared memory, and message queues, so a
system without a real /dev directory is functionally crippled.

Apart from that, Cygwin automatically simulates POSIX devices internally. Up to Cygwin 1.7.11, these
devices couldn't be seen with the command ls /dev/ although commands such as ls /dev/tty worked
fine. Starting with Cygwin 1.7.12, the /dev directory is automagically populated with existing POSIX
devices by Cygwin in a way comparable with a udev [http://en.wikipedia.org/wiki/Udev] based virtual /
dev directory under Linux.

http://en.wikipedia.org/wiki/Udev
http://en.wikipedia.org/wiki/Udev

Using Cygwin

57

Cygwin supports the following character devices commonly found on POSIX systems:

/dev/null
/dev/zero
/dev/full

/dev/console Pseudo device name for the current console window of a session.
 Up to Cygwin 1.7.9, this was the only name for a console.
 Different consoles were indistinguishable.
 Cygwin's /dev/console is not quite comparable with the console
 device on UNIX machines.

/dev/cons0 Starting with Cygwin 1.7.10, Console sessions are numbered from
/dev/cons1 /dev/cons0 upwards. Console device names are pseudo device
... names, only accessible from processes within this very console
 session. This is due to a restriction in Windows.

/dev/tty The current controlling tty of a session.

/dev/ptmx Pseudo tty master device.

/dev/pty0 Pseudo ttys are numbered from /dev/pty0 upwards as they are
/dev/pty1 requested.
...

/dev/ttyS0 Serial communication devices. ttyS0 == Win32 COM1,
/dev/ttyS1 ttyS1 == COM2, etc.
...

/dev/pipe
/dev/fifo

/dev/kmsg Kernel message pipe, for usage with sys logger services.

/dev/random Random number generator.
/dev/urandom

/dev/dsp Default sound device of the system.

Cygwin also has several Windows-specific devices:

/dev/com1 The serial ports, starting with COM1 which is the same as ttyS0.
/dev/com2 Please use /dev/ttySx instead.
...

/dev/conin Same as Windows CONIN$.
/dev/conout Same as Windows CONOUT$.
/dev/clipboard The Windows clipboard, text only
/dev/windows The Windows message queue.

Block devices are accessible by Cygwin processes using fixed POSIX device names. These POSIX
device names are generated using a direct conversion from the POSIX namespace to the internal NT
namespace. E.g. the first harddisk is the NT internal device \device\harddisk0\partition0 or the first
partition on the third harddisk is \device\harddisk2\partition1. The first floppy in the system is \device
\floppy0, the first CD-ROM is \device\cdrom0 and the first tape drive is \device\tape0.

The mapping from physical device to the name of the device in the internal NT namespace can be found
in various places. For hard disks and CD/DVD drives, the Windows "Disk Management" utility (part of
the "Computer Management" console) shows that the mapping of "Disk 0" is \device\harddisk0. "CD-
ROM 2" is \device\cdrom2. Another place to find this mapping is the "Device Management" console.

Using Cygwin

58

Disks have a "Location" number, tapes have a "Tape Symbolic Name", etc. Unfortunately, the places
where this information is found is not very well-defined.

For external disks (USB-drives, CF-cards in a cardreader, etc) you can use Cygwin to show the
mapping. /proc/partitions contains a list of raw drives known to Cygwin. The df command
shows a list of drives and their respective sizes. If you match the information between /proc/
partitions and the df output, you should be able to figure out which external drive corresponds to
which raw disk device name.

Note

Apart from tape devices which are not block devices and are by default accessed directly,
accessing mass storage devices raw is something you should only do if you know what you're
doing and know how to handle the information. Writing to a raw mass storage device you
should only do if you really know what you're doing and are aware of the fact that any mistake
can destroy important information, for the device, and for you. So, please, handle this ability
with care. You have been warned.

Last but not least, the mapping from POSIX /dev namespace to internal NT namespace is as follows:

POSIX device name Internal NT device name

/dev/st0 \device\tape0, rewind
/dev/nst0 \device\tape0, no-rewind
/dev/st1 \device\tape1
/dev/nst1 \device\tape1
...
/dev/st15
/dev/nst15

/dev/fd0 \device\floppy0
/dev/fd1 \device\floppy1
...
/dev/fd15

/dev/sr0 \device\cdrom0
/dev/sr1 \device\cdrom1
...
/dev/sr15

/dev/scd0 \device\cdrom0
/dev/scd1 \device\cdrom1
...
/dev/scd15

/dev/sda \device\harddisk0\partition0 (whole disk)
/dev/sda1 \device\harddisk0\partition1 (first partition)
...
/dev/sda15 \device\harddisk0\partition15 (fifteenth partition)

/dev/sdb \device\harddisk1\partition0
/dev/sdb1 \device\harddisk1\partition1

[up to]

/dev/sddx \device\harddisk127\partition0
/dev/sddx1 \device\harddisk127\partition1
...
/dev/sddx15 \device\harddisk127\partition15

Using Cygwin

59

if you don't like these device names, feel free to create symbolic links as they are created on Linux
systems for convenience:

ln -s /dev/sr0 /dev/cdrom
ln -s /dev/nst0 /dev/tape
...

The .exe extension
Win32 executable filenames end with .exe but the .exe need not be included in the command, so that
traditional UNIX names can be used. However, for programs that end in .bat and .com, you cannot
omit the extension.

As a side effect, the ls filename gives information about filename.exe if filename.exe exists
and filename does not. In the same situation the function call stat("filename",..) gives
information about filename.exe. The two files can be distinguished by examining their inodes, as
demonstrated below.

bash$ ls *
a a.exe b.exe
bash$ ls -i a a.exe
445885548 a 435996602 a.exe
bash$ ls -i b b.exe
432961010 b 432961010 b.exe

If a shell script myprog and a program myprog.exe coexist in a directory, the shell script has
precedence and is selected for execution of myprog. Note that this was quite the reverse up to Cygwin
1.5.19. It has been changed for consistency with the rest of Cygwin.

The gcc compiler produces an executable named filename.exe when asked to produce filename.
This allows many makefiles written for UNIX systems to work well under Cygwin.

The /proc filesystem
Cygwin, like Linux and other similar operating systems, supports the /proc virtual filesystem. The
files in this directory are representations of various aspects of your system, for example the command
cat /proc/cpuinfo displays information such as what model and speed processor you have.

One unique aspect of the Cygwin /proc filesystem is /proc/registry, see next section.

The Cygwin /proc is not as complete as the one in Linux, but it provides significant capabilities. The
procps package contains several utilities that use it.

The /proc/registry filesystem
The /proc/registry filesystem provides read-only access to the Windows registry. It displays
each KEY as a directory and each VALUE as a file. As anytime you deal with the Windows registry, use
caution since changes may result in an unstable or broken system. There are additionally subdirectories
called /proc/registry32 and /proc/registry64. They are identical to /proc/registry
on 32 bit host OSes. On 64 bit host OSes, /proc/registry32 opens the 32 bit processes view on
the registry, while /proc/registry64 opens the 64 bit processes view.

Reserved characters ('/', '\', ':', and '%') or reserved names (. and ..) are converted by percent-encoding:

Using Cygwin

60

bash$ regtool list -v '\HKEY_LOCAL_MACHINE\SYSTEM\MountedDevices'
...
\DosDevices\C: (REG_BINARY) = cf a8 97 e8 00 08 fe f7
...
bash$ cd /proc/registry/HKEY_LOCAL_MACHINE/SYSTEM
bash$ ls -l MountedDevices
...
-r--r----- 1 Admin SYSTEM 12 Dec 10 11:20 %5CDosDevices%5CC%3A
...
bash$ od -t x1 MountedDevices/%5CDosDevices%5CC%3A
0000000 cf a8 97 e8 00 08 fe f7 01 00 00 00

The unnamed (default) value of a key can be accessed using the filename @.

If a registry key contains a subkey and a value with the same name foo, Cygwin displays the subkey as
foo and the value as foo%val.

The @pathnames
To circumvent the limitations on shell line length in the native Windows command shells, Cygwin
programs, when invoked by non-Cygwin processes, expand their arguments starting with "@" in a
special way. If a file pathname exists, the argument @pathname expands recursively to the content
of pathname. Double quotes can be used inside the file to delimit strings containing blank space. In
the following example compare the behaviors /bin/echo when run from bash and from the Windows
command prompt.

Example 3.2. Using @pathname

bash$ /bin/echo 'This is "a long" line' > mylist
bash$ /bin/echo @mylist
@mylist
bash$ cmd
c:\> c:\cygwin\bin\echo @mylist
This is a long line

Using Cygwin

61

The CYGWIN environment variable
Implemented options

The CYGWIN environment variable is used to configure many global settings for the Cygwin runtime
system. It contains the options listed below, separated by blank characters. Many options can be turned
off by prefixing with no.

• (no)detect_bloda - If set, Cygwin will try to detect foreign applications which try to inject
threads into a Cygwin process, or which redirect system sockets by providing an enforced so-
called Layered Service Provider. This may or may not help to detect BLODAs [http://
cygwin.com/faq/faq.html#faq.using.bloda]. Don't use this option for day-to-day usage, it will slow
down every thread and socket creation!

• (no)dosfilewarning - If set, Cygwin will warn the first time a user uses an "MS-DOS" style
path name rather than a POSIX-style path name. Defaults to off.

• (no)export - If set, the final values of these settings are re-exported to the environment as
CYGWIN again. Defaults to off.

• error_start:Win32filepath - if set, runs Win32filepath when cygwin encounters a fatal
error, which is useful for debugging. Win32filepath is usually set to the path to gdb or dumper,
for example C:\cygwin\bin\gdb.exe. There is no default set.

• (no)glob[:ignorecase] - if set, command line arguments containing UNIX-style file wildcard
characters (brackets, braces, question mark, asterisk, escaped with \) are expanded into lists of files
that match those wildcards. This is applicable only to programs run from non-Cygwin programs such
as a CMD prompt. That means that this setting does not affect globbing operations for shells such as
bash, sh, tcsh, zsh, etc. Default is set.

This option also accepts an optional [no]ignorecase modifer. If supplied, wildcard matching is
case insensitive. The default is noignorecase

• (no)pipe_byte - causes Cygwin to open pipes in byte mode rather than message mode.

• proc_retry:n - causes fork() and exec*() to retry n times when a child process fails due to
certain windows-specific errors. These errors usually occur when processes are being started while a
user is logging off.

• (no)reset_com - if set, serial ports are reset to 9600-8-N-1 with no flow control when used. This
is done at open time and when handles are inherited. Defaults to set.

• (no)wincmdln - if set, the windows complete command line (truncated to ~32K) will be passed on
any processes that it creates in addition to the normal UNIX argv list. Defaults to not set.

• winsymlinks:{lnk,native,nativestrict} - if set to just winsymlinks or
winsymlinks:lnk, Cygwin creates symlinks as Windows shortcuts with a special header and the
R/O attribute set.

If set to winsymlinks:native or winsymlinks:nativestrict, Cygwin creates symlinks
as native Windows symlinks on filesystems and OS versions supporting them. If the OS is known not
to support native symlinks (Windows XP, Windows Server 2003), a warning message is produced
once per session.

The difference between winsymlinks:native and winsymlinks:nativestrict is this: If
the filesystem supports native symlinks and Cygwin fails to create a native symlink for some reason,

http://cygwin.com/faq/faq.html#faq.using.bloda
http://cygwin.com/faq/faq.html#faq.using.bloda
http://cygwin.com/faq/faq.html#faq.using.bloda

Using Cygwin

62

it will fall back to creating Cygwin default symlinks with winsymlinks:native, while with
winsymlinks:nativestrict the symlink(2) system call will immediately fail.

For more information on symbolic links, see the section called “Symbolic links”.

Obsolete options
Certain CYGWIN options available in past releases have been removed in Cygwin 1.7 for one reason or
another. These obsolete options are listed below.

• (no)binmode - This option has been removed because all file opens default to binary mode, unless
the open mode has been specified explicitly in the open(2) call.

• check_case - This option has been removed in favor of real case sensitivity and the per-mount
option "posix=[0|1]". For more information, read the documentation in the section called “The
Cygwin Mount Table” and the section called “Case sensitive filenames”.

• codepage:[ansi|oem] - This option controlled which character set is used for file and
console operations. Since Cygwin is now doing all character conversion by itself, depending on
the application call to the setlocale() function, and in turn by the setting of the environment
variables $LANG, $LC_ALL, or $LC_CTYPE, this setting became superfluous.

• (no)envcache - Originally, envcache controlled caching of environment variable conversion
between Win32 and POSIX. The default setting works fine, the option was just useless.

• forkchunk:[intval] - This option allowed to influence the fork() function in the way the
memory of the parent process gets copied to the child process. This functionality was only useful for
Windows 95/98/Me.

• (no)ntea - This option has been removed since it only fakes security which is considered
dangerous and useless. It also created an uncontrollably large file on FAT and was entirely useless on
FAT32.

• (no)ntsec - This option has been removed in favor of the per-mount option "acl"/"noacl". For
more information, read the documentation in the section called “The Cygwin Mount Table”.

• (no)server - Originally this option had to be enabled on the client side to use features only
available when running cygserver. This option has been removed because Cygwin now always
tries to contact cygserver if a function is called which requires cygserver being available. For more
information, read the documentation in the section called “Cygserver”.

• (no)smbntsec - This option has been removed in favor of the per-mount option "acl"/"noacl". For
more information, read the documentation in the section called “The Cygwin Mount Table”.

• (no)strip_title - Removed because setting the Window title can be controlled by the
application via Escape sequences.

• (no)title - Removed because setting the Window title can be controlled by the application via
Escape sequences.

• (no)transparent_exe - This option has been removed because the behaviour it switched on is
now the standard behaviour in Cygwin.

• (no)traverse - This option has been removed because traverse checking is not quite correctly
implemented by Microsoft and it's behaviour has been getting worse with each new OS version. This
complicates its usage so the option has been removed for now.

Using Cygwin

63

• (no)tty - If set, Cygwin enabled extra support (i.e., termios) for UNIX-like ttys in the Windows
console. This option has been removed because it can be easily replaced by using a terminal like
mintty, and it does not work well with some Windows programs.

• (no)upcaseenv - This option could be used to convert all environment variables to uppercase.
This was the default behavior in releases prior to Cygwin 1.7. Since keeping the case of environment
variables intact is POSIXly correct, Cygwin now does not change the case of environment variables,
except for a restricted set to maintain minimal backward compatibility. The current list of always
uppercased variables is:

 ALLUSERSPROFILE
 COMMONPROGRAMFILES
 COMPUTERNAME
 COMSPEC
 HOME
 HOMEDRIVE
 HOMEPATH
 NUMBER_OF_PROCESSORS
 OS
 PATH
 PATHEXT
 PROCESSOR_ARCHITECTURE
 PROCESSOR_IDENTIFIER
 PROCESSOR_LEVEL
 PROCESSOR_REVISION
 PROGRAMFILES
 SYSTEMDRIVE
 SYSTEMROOT
 TEMP
 TERM
 TMP
 TMPDIR
 WINDIR

Using Cygwin

64

POSIX accounts, permission, and security
This section discusses how the Windows security model is utilized in Cygwin to implement POSIX
account information, POSIX-like permissions, and how the Windows authentication model is used to
allow cygwin applications to switch users in a POSIX-like fashion.

The setting of POSIX-like file and directory permissions is controlled by the mount option (no)acl
which is set to acl by default.

We start with a short overview. Note that this overview must be necessarily short. If you want to learn
more about the Windows security model, see the Access Control [http://msdn.microsoft.com/en-us/
library/aa374860(VS.85).aspx] article in MSDN documentation.

POSIX concepts and in particular the POSIX security model are not discussed here, but assumed to be
understood by the reader. If you don't know the POSIX security model, search the web for beginner
documentation.

Brief overview of Windows security
In the Windows security model, almost any "object" is securable. "Objects" are files, processes, threads,
semaphores, etc.

Every object has a data structure attached, called a "security descriptor" (SD). The SD contains all
information necessary to control who can access an object, and to determine what they are allowed to do
to or with it. The SD of an object consists of five parts:

• Flags which control several aspects of this SD. This is not discussed here.
• The SID of the object owner.
• The SID of the object owner group.
• A list of "Access Control Entries" (ACE), called the "Discretionary Access Control List" (DACL).
• Another list of ACEs, called the "Security Access Control List" (SACL), which doesn't matter for our

purpose. We ignore it here.

Every ACE contains a so-called "Security IDentifier" (SID) and other stuff which is explained a bit
later. Let's talk about the SID first.

A SID is a unique identifier for users, groups, computers and Active Directory (AD) domains. SIDs are
basically comparable to POSIX user ids (UIDs) and group ids (GIDs), but are more complicated because
they are unique across multiple machines or domains. A SID is a structure of multiple numerical values.
There's a convenient convention to type SIDs, as a string of numerical fields separated by hyphen
characters. Here's an example:

SID of a machine "foo":

 S-1-5-21-165875785-1005667432-441284377

SID of a user "johndoe" of the system "foo":

 S-1-5-21-165875785-1005667432-441284377-1023

The first field is always "S", which is just a notational convention to show that this is a SID. The second
field is the version number of the SID structure, So far there exists only one version of SIDs, so this
field is always 1. The third and fourth fields represent the "authority" which can be thought of as a type
or category of SIDs. There are a couple of builtin accounts and accounts with very special meaning

http://msdn.microsoft.com/en-us/library/aa374860(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa374860(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa374860(VS.85).aspx

Using Cygwin

65

which have certain well known values in these third and fourth fields. However, computer and domain
SIDs always start with "S-1-5-21". The next three fields, all 32 bit values, represent the unique 96 bit
identifier of the computer system. This is a hopefully unique value all over the world, but in practice it's
sufficient if the computer SIDs are unique within a single Windows network.

As you can see in the above example, SIDs of users (and groups) are identical to the computer SID,
except for an additional part, the so-called "relative identifier" (RID). So the SID of a user is always
uniquely attached to the system on which the account has been generated.

It's a bit different in domains. The domain has its own SID, and that SID is identical to the SID of
the first domain controller, on which the domain is created. Domain user SIDs look exactly like the
computer user SIDs, the leading part is just the domain SID and the RID is created when the user is
created.

Ok, consider you created a new domain "bar" on some new domain controller and you would like to
create a domain account "johndoe":

SID of a domain "bar.local":

 S-1-5-21-186985262-1144665072-740312968

SID of a user "johndoe" in the domain "bar.local":

 S-1-5-21-186985262-1144665072-740312968-1207

So you now have two accounts called johndoe, one account created on the machine "foo", one created in
the domain "bar.local". Both have different SIDs and not even the RID is the same. How do the systems
know it's the same account? After all, the name is the same, right? The answer is, these accounts are not
identical. All machines on the network will treat these SIDs as identifying two separate accounts. One
is "FOO\johndoe", the other one is "BAR\johndoe" or "johndoe@bar.local". Different SID, different
account. Full stop.

Starting with Cygwin 1.7.33, Cygwin uses an automatic, internal translation from Windows SID to
POSIX UID/GID. This mechanism, which is the preferred method for the SID<=>UID/GID mapping, is
described in detail in the section called “Mapping Windows accounts to POSIX accounts”.

Prior to Cygwin 1.7.33, the last part of the SID, the so called "Relative IDentifier" (RID), was by
default used as UID and/or GID when you created the /etc/passwd and /etc/group files using
the mkpasswd and mkgroup tools. These tools as well as reading accounts from /etc/passwd
and /etc/group files is still present in recent versions of Cygwin, but you should switch to the
aforementioned automatic translation, unless you have very specific needs. Again, see the section called
“Mapping Windows accounts to POSIX accounts” for the details.

Do you still remember the SIDs with special meaning? In offical notation they are called "well-known
SIDs". For example, POSIX has no GID for the group of "all users" or "world" or "others". The last
three rwx bits in a unix-style permission value just represent the permissions for "everyone who is not
the owner or is member of the owning group". Windows has a SID for these poor souls, the "Everyone"
SID. Other well-known SIDs represent circumstances under which a process is running, rather than
actual users or groups. Here are a few examples for well-known SIDs:

Everyone S-1-1-0 Simply everyone...
Batch S-1-5-3 Processes started via the task
 scheduler are member of this group.
Interactive S-1-5-4 Only processes of users which are
 logged in via an interactive
 session are members here.

Using Cygwin

66

Authenticated Users S-1-5-11 Users which have gone through
 the authentication process and
 survived. Anonymously accessing
 users are not incuded here.
SYSTEM S-1-5-18 A special account which has all
 kinds of dangerous rights, sort of
 an uber-root account.

For a full list please refer to the MSDN document Well-known SIDs [http://msdn.microsoft.com/
en-us/library/aa379649.aspx]. The Cygwin package called "csih" provides a tool, /usr/lib/csih/
getAccountName.exe, which can be used to print the (possibly localized) name for the various well-
known SIDS.

Naturally, well-known SIDs are the same on each machine, so they are not unique to a machine or
domain. They have the same meaning across the Windows network.

Additionally, there are a couple of well-known builtin groups, which have the same SID on every
machine and which have certain user rights by default:

administrators S-1-5-32-544
users S-1-5-32-545
guests S-1-5-32-546
...

For instance, every account is usually member in the "Users" group. All administrator accounts are
member of the "Administrators" group. That's all about it as far as single machines are involved. In a
domain environment it's a bit more tricky. Since these SIDs are not unique to a machine, every domain
user and every domain group can be a member of these well known groups. Consider the domain
group "Domain Admins". This group is by default in the "Administrators" group. Let's assume the
above computer called "foo" is a member machine of the domain "bar.local". If you stick the user
"BAR\johndoe" into the group "Domain Admins", this guy will automatically be a member of the
administrators group on "foo" when logging on to "foo". Neat, isn't it?

Back to ACE and ACL. POSIX is able to create three different permissions, the permissions for the
owner, for the group and for the world. In contrast the Windows ACL has a potentially infinite number
of members... as long as they fit into 64K. Every member is an ACE. ACE consist of three parts:

• The type of the ACE (allow ACE or deny ACE).
• Permission bits, 32 of them.
• The SID for which the permissions are allowed or denied.

The two (for us) important types of ACEs are the "access allowed ACE" and the "access denied ACE".
As the names imply, the allow ACE tells the system to allow the given permissions to the SID, the deny
ACE results in denying the specific permission bits.

The possible permissions on objects are more detailed than in POSIX. For example, the permission to
delete an object is different from the permission to change object data, and even changing object data
can be separated into different permission bits for different kind of data. But there's a problem with the
definition of a "correct" ACL which disallows mapping of certain POSIX permissions cleanly. See the
section called “File permissions”.

POSIX is able to create only three different permissions? Not quite. Newer operating systems and file
systems on POSIX systems also provide access control lists. Two different APIs exist for accessing
these ACLs, the Solaris API and the POSIX API. Cygwin implements the original Solaris API to access
Windows ACLs in a Unixy way. Online man pages for the Solaris ACL API can be found on http://
docs.oracle.com. For an overview see acl(5) [http://docs.oracle.com/cd/E23824_01/html/821-1474/
acl-5.html#scrolltoc].

http://msdn.microsoft.com/en-us/library/aa379649.aspx
http://msdn.microsoft.com/en-us/library/aa379649.aspx
http://msdn.microsoft.com/en-us/library/aa379649.aspx
http://docs.oracle.com
http://docs.oracle.com
http://docs.oracle.com/cd/E23824_01/html/821-1474/acl-5.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1474/acl-5.html#scrolltoc
http://docs.oracle.com/cd/E23824_01/html/821-1474/acl-5.html#scrolltoc

Using Cygwin

67

Mapping Windows accounts to POSIX accounts
For as long as Cygwin has existed, it has stored user and group information in /etc/passwd and /
etc/group files. Under the assumption that these files would never be too large, the first process
in a process tree, as well as every execing process within the tree would parse them into structures in
memory. Thus every Cygwin process would contain an expanded copy of the full information from /
etc/passwd and /etc/group.

This approach has a few downsides. One of them is that the idea that these files will always be small,
is flawed. Another one is that reading the entire file is most of the time entirely useless, since most
processes only need information on their own user and the primary group. Last but not least, the passwd
and group files have to be maintained separately from the already existing Windows user databases, the
local SAM and Active Directory.

On the other hand, we have to have this mapping between Windows SIDs and POSIX uid/gid values, so
we need a mechanism to convert SIDs to uid/gid values and vice versa.

Microsoft "Services for UNIX" (SFU) (deprecated since Windows 8/Server 2012) never used passwd/
group files. Rather, SFU used a fixed, computational mapping between SIDs and POSIX uid/gid which
even has Active Directory support. It allows us to generate uid/gid values from SIDs and vice versa. The
mechanism is documented, albeit in a confusing way and spread over multiple MSDN articles.

Starting with Cygwin 1.7.33, Cygwin utilizes an approach inspired by the mapping method as
implemented by SFU, with a few differences for backward compatibility and to handle some border
cases differently.

Mapping Windows SIDs to POSIX uid/gid values

The following description assumes you're comfortable with the concept of Windows SIDs and RIDs. For
a brief introduction, see the section called “Brief overview of Windows security”.

Cygwin's mapping between SIDs and uid/gid values works in two ways.

• Read /etc/passwd and /etc/group files if they exist, just as in the olden days, mainly for
backward compatibility.

• If no files are present, or if an entry is missing in the files, ask Windows.

At least, that's the default behaviour now. It will be configurable using a file /etc/nsswitch.conf,
which is discussed in the section called “The /etc/nsswitch.conf file”. Let's explore the default
for now.

If the passwd or group files are present, they will be scanned on demand as soon as a mapping from
SIDs to uid/gid or account names is required. The new mechanism will never read the entire file into
memory, but only scan for the requested entry and cache this one in memory.

If no entry is found, or no passwd or group file was present, Cygwin will ask the OS.

Note

If the first process in a Cygwin process tree determines that no /etc/passwd or /etc/
group file is present, no other process in the entire process tree will try to read the files later
on. This is done for self-preservation. It's rather bad if the uid or gid of a user changes during
the lifetime of a process tree.

For the same reason, if you delete the /etc/passwd or /etc/group file, this will be
ignored. The passwd and group records read from the files will persist in memory until either

Using Cygwin

68

a new /etc/passwd or /etc/group is created, or you exit all processes in the current
process tree.

See the note in the section called “The /etc/nsswitch.conf file” for some
comprehensive examples.

So if we've drawn a blank reading the files, we're going to ask the OS. First thing, we ask the local
machine for the SID or the username. The OS functions LookupAccountSid [http://msdn.microsoft.com/
en-us/library/windows/desktop/aa379166%28v=vs.85%29.aspx] and LookupAccountName [http://
msdn.microsoft.com/en-us/library/windows/desktop/aa379159%28v=vs.85%29.aspx] are pretty
intelligent. They have all the stuff built in to ask for any account of the local machine, the Active
Directory domain of the machine, the Global Catalog of the forest of the domain, as well as any trusted
domain of our forest for the information. One OS call and we're practically done...

Except, the calls only return the mapping between SID, account name and the account's domain. We
don't have a mapping to POSIX uid/gid and we're missing information on the user's home dir and login
shell.

Let's discuss the SID<=>uid/gid mapping first. Here's how it works.

• Well-known SIDs [http://msdn.microsoft.com/en-us/library/aa379649.aspx] in the NT_AUTHORITY
domain of the S-1-5-RID type, or aliases of the S-1-5-32-RID type are mapped to the uid/gid value
RID. Examples:

 "SYSTEM" S-1-5-18 <=> uid/gid: 18
 "Users" S-1-5-32-545 <=> uid/gid: 545

• Other well-known SIDs in the NT_AUTHORITY domain (S-1-5-X-RID):

 S-1-5-X-RID <=> uid/gid: 0x1000 * X + RID

Example:

 "NTLM Authentication" S-1-5-64-10 <=> uid/gid: 0x4000A == 262154

• Other well-known SIDs:

 S-1-X-Y <=> uid/gid: 0x10000 + 0x100 * X + Y

Example:

 "LOCAL" S-1-2-0 <=> uid/gid: 0x10200 == 66048
 "Creator Group" S-1-3-1 <=> uid/gid: 0x10301 == 66305

• Logon SIDs: The LogonSid of the current user's session is converted to the fixed uid 0xfff == 4095
and named "CurrentSession". Any other LogonSid is converted to the fixed uid 0xffe == 4094 and
named "OtherSession".

• Mandatory Labels:

 S-1-16-RID <=> uid/gid: 0x60000 + RID

Example:

 "Medium Mandatory Level" S-1-16-8192 <=> uid/gid: 0x62000 == 401408

• Accounts from the local machine's user DB (SAM):

http://msdn.microsoft.com/en-us/library/windows/desktop/aa379166%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379166%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379166%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379159%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379159%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379159%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa379649.aspx
http://msdn.microsoft.com/en-us/library/aa379649.aspx

Using Cygwin

69

 S-1-5-21-X-Y-Z-RID <=> uid/gid: 0x30000 + RID

Example:

 "Administrator" S-1-5-21-X-Y-Z-500 <=> uid/gid: 0x301f4 == 197108

• Accounts from the machine's primary domain:

 S-1-5-21-X-Y-Z-RID <=> uid/gid: 0x100000 + RID

Example:

 "Domain Users" S-1-5-21-X-Y-Z-513 <=> uid/gid: 0x100201 == 1049089

• Accounts from a trusted domain of the machine's primary domain:

 S-1-5-21-X-Y-Z-RID <=> uid/gid: trustPosixOffset(domain) + RID

trustPosixOffset? This needs a bit of explanation. This value exists in Windows domains
already since before Active Directory days. What happens is this. If you create a domain trust
between two domains, a trustedDomain entry will be added to both databases. It describes
how this domain trusts the other domain. One attribute of a trust is a 32 bit value called
trustPosixOffset For each new trust, trustPosixOffset will get some automatic value.
In recent AD domain implementations, the first trusted domain will get trustPosixOffset set to
0x80000000. Following domains will get lower values. Unfortunately the domain admins are allowed
to set the trustPosixOffset value for each trusted domain to some arbitrary 32 bit value, no
matter what the other trustPosixOffset are set to, thus allowing any kind of collisions between
the trustPosixOffset values of domains. That's not exactly helpful, but as the user of this value,
we have to trust the domain admins to set trustPosixOffset to sensible values, or to keep it at
the system chosen defaults.

So, for the first (or only) trusted domain of your domain, the automatic offset is 0x80000000. An
example for a user of that trusted domain is

 S-1-5-21-X-Y-Z-1234 <=> uid/gid 0x800004d2 == 2147484882

There's one problem with this approach. Assuming you're running in the context of a local SAM
user on a domain member machine. Local users don't have the right to fetch this kind of domain
information from the DC, they'll get permission denied. In this case Cygwin will fake a sensible
trustPosixOffset value.

Another problem is if the AD administrators chose an unreasonably small trustPosixOffset
value. Anything below the hexadecimal value 0x100000 (the POSIX offset of the primary domain)
is bound to produce collisions with system accounts as well as local accounts. The right thing to do
in this case is to notify your administrator of the problem and to ask for moving the offset to a more
reasonable value. However, to reduce the probability for collisions, Cygwin overrides this offset with
a sensible fixed replacement offset.

• Local accounts from another machine in the network:

There's no SID<=>uid/gid mapping implemented for this case. The problem is, there's no
way to generate a bijective mapping. There's no central place which keeps an analogue of
the trustPosixOffset, and there's the additional problem that the LookupAccountSid
[http://msdn.microsoft.com/en-us/library/windows/desktop/aa379166%28v=vs.85%29.aspx]
and LookupAccountName [http://msdn.microsoft.com/en-us/library/windows/desktop/
aa379159%28v=vs.85%29.aspx] functions cannnot resolve the SIDs, unless they know the name of

http://msdn.microsoft.com/en-us/library/windows/desktop/aa379166%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379166%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379159%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379159%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379159%28v=vs.85%29.aspx

Using Cygwin

70

the machine this SID comes from. And even then it will probably suffer a Permission denied
error when trying to ask the machine for its local account.

Now we have a semi-bijective mapping between SIDs and POSIX uid/gid values, but given that we
have potentially users and groups in different domains having the same name, how do we uniquely
distinguish between them by name? Well, we can do that by making their names unique in a per-
machine way. Dependent on the domain membership of the account, and dependent of the machine
being a domain member or not, the user and group names will be generated using a domain prefix and a
separator character between domain and account name. The separator character is the plus sign, +.

• Well-known and builtin accounts will be named as in Windows:

 "SYSTEM", "LOCAL", "Medium Mandatory Level", ...

• If the machine is not a domain member machine, only local accounts can be resolved into names, so
for ease of use, just the account names are used as Cygwin user/group names:

 "corinna", "bigfoot", "None", ...

• If the machine is a domain member machine, all accounts from the primary domain of the machine
are mapped to Cygwin names without domain prefix:

 "corinna", "bigfoot", "Domain Users", ...

while accounts from other domains are prepended by their domain:

 "DOMAIN1+corinna", "DOMAIN2+bigfoot", "DOMAIN3+Domain Users", ...

• Local machine accounts of a domain member machine get a Cygwin user name the same way as
accounts from another domain: The local machine name gets prepended:

 "MYMACHINE+corinna", "MYMACHINE+bigfoot", "MYMACHINE+None", ...

• If LookupAccountSid fails, Cygwin checks the accounts against the known trusted domains. If the
account is from one of the trusted domains, an artificial account name is created. It consists of the
domain name, and a special name created from the account RID:

 "MY_DOM+User(1234)", "MY_DOM+Group(5678)"

Otherwise we know nothing about this SID, so it will be mapped to the fake accounts Unknown
+User/Unknown+Group with uid/gid -1.

Cygwin user names, home dirs, login shells

Obviously, if you don't maintain passwd and group files, you need to have a way to maintain the
other fields of a passwd entry as well. Three things come to mind:

• You want to use a Cygwin username different from your Windows username.

Note

Note: This is only supported via /etc/passwd and /etc/group files. A Cygwin
username maintained in the Windows user databases would require very costly (read: slow)
search operations.

• You want a home dir different from the default /home/$USER.
• You want to specify a different login shell than /bin/bash.

Using Cygwin

71

How this is done depends on your account being a domain account or a local account. Let's start with
the default. Assuming your Windows account name is bigfoot and your domain is MY_DOM. Your
default passwd entry looks like this:

 bigfoot:*:<uid>:<gid>:U-MY_DOM\bigfoot,S-1-5-....:/home/bigfoot:/bin/bash

or, if your account is from a different domain than the primary domain of the machine:

 MY_DOM+bigfoot:*:<uid>:<gid>:U-MY_DOM\bigfoot,S-1-5-....:/home/bigfoot:/bin/bash

Yes, the default homedir is still /home/bigfoot.

If your account is a domain account:

• Either create an /etc/passwd and/or /etc/group file with entries for your account and tweak
that,

• or Cygwin will utilize the posixAccount/posixGroup attributes per RFC 2307 [https://
tools.ietf.org/html/rfc2307]. These attributes are by default available in Active Directory since
Windows Server 2003 R2. They are not set, unless utilized by the (deprecated since Server 2012
R2) Active Directory "Server for NIS" feature. The user attributes utilized by Cygwin are:
: unixHomeDirectory
: If set, will be used as Cygwin home directory.
: loginShell
: If set, will be used as Cygwin login shell.
: gecos
: Content will be added to the pw_gecos field.
: uidNumber
: See the section called “NFS account mapping”.
: The group attributes utilized by Cygwin are:
: gidNumber
: See the section called “NFS account mapping”.

Apart from power shell scripting or inventing new CLI tools, these attributes can be changed using
the Attribute Editor tab in the user properties dialog of the Active Directory Users
and Computers MMC snap-in. Alternatively, if the Server for NIS administration feature
has been installed, there will be a UNIX Attributes tab which contains the required fields, except
for the gecos field, which isn't really important anyway. Last resort is ADSI Edit.

The primary group of a user is always the Windows primary group set in Active Directory and can't
be changed.

If your machine is not a domain member machine or your account is a local account for some reason:

• Either create an /etc/passwd and/or /etc/group file with entries for your account and tweak
that,

• or enter the information into the comment field of your local user entry. In the Local Users and
Groups MMC snap-in it's called Description.

You can utilize this field even if you're running a "home edition" of Windows, using the command
line. The net user command allows to set all values in the SAM, even if the GUI is crippled.

A Cygwin SAM comment entry looks like this:

<cygwin key="value" key="value" [...] />

https://tools.ietf.org/html/rfc2307
https://tools.ietf.org/html/rfc2307
https://tools.ietf.org/html/rfc2307

Using Cygwin

72

The supported keys are:
: home="value"
: Sets the Cygwin home dir to value.
: shell="value"
: Sets the Cygwin login shell to value.
: group="value"
: Sets the Cygwin primary group of the account to value, provided that the user *is* already a
member of that group. This allows to override the default "None" primary group for local accounts.
One nice idea here is, for instance group="Users".
: unix="value"
: Sets the NFS/Samba uid of the user to the decimal value. See the section called “NFS account
mapping”.

The <cygwin .../> string can start at any point in the comment, but you have to follow the rules:
• It starts with "<cygwin " and ends with "/>".
• The "cygwin" string and the key names have to be lowercase.
• No spaces between key and "value", just the equal sign.
• The value must be placed within double quotes and it must not contain a double quote itself. The

double quotes are required for the decimal values as well!

CMD example:

net user corinna /comment:"<cygwin home=\"/home/foo\"/>"

Bash example (use single quotes):

net user corinna /comment:'<cygwin home="/home/foo"/>'

For changing group comments, use the `net localgroup' command. The supported key/value pair for
groups are:
: unix="value"
: Sets the NFS/Samba gid of the group to the decimal value. See the section called “NFS account
mapping”.

Caching account information

The information fetched from the Windows account database or the /etc/passwd and /etc/
group files is cached by the process. The cached information is inherited by Cygwin child processes. A
Cygwin process invoked from a Windows command, such as CMD.exe, will start a new Cygwin process
tree and the caching starts from scratch (unless cygserver is running, but read on).

While usually working fine, this has some drawbacks. Consider a shell calling id. id fetches all group
information from the current token and caches them. Unfortunately id doesn't start any child processes,
so the information is lost as soon as id exits.

But there's another caching mechanism available. If cygserver is running it will provide passwd and
group entry caching for all processes in every Cygwin process tree started after cygserver. So, if you
start a Cygwin Terminal and cygserver is running at the time, mintty, the shell, and all child processes
will use cygserver caching. If you start a Cygwin Terminal and cygserver is not running at the time,
none of the processes started inside this terminal window will use cygserver caching.

The advantage of cygserver caching is that it's system-wide and, as long as cygserver is running,
unforgetful. Every Cygwin process on the system will have the cygserver cache at its service.

Using Cygwin

73

Additionally, all information requested from cygserver once, will be cached inside the process itself
and, again, propagated to child processes.

If you automatically start Cygwin processes as Windows services at system startup, you may wish to
consider starting cygserver first in order to take advantage of this system-wide caching. To assure that
cygserver has started prior to starting sshd or other Cygwin processes, you may wish to create service
startup dependencies. Cygserver should probably wait for Windows TCPIP and AFD services before
it starts, and then other Cygwin process should start after cygserver. Example Windows commands
to accomplish this (after the services already exist) are shown below. You will need an administrative
prompt to run the sc config commands.

 # Delay Cygserver until TCPIP and AFD have started
 # Note the (odd) required space character after "depend="

 sc config cygserver depend= tcpip/afd

 # Delay sshd until after Cygserver has started
 # Again note the (odd) required space character after "depend="

 sc config sshd depend= cygserver

 # View the Cygserver service details

 sc qc cygserver

Note that this sc config command replaces any existing dependencies. The above changes will not
impact the running instance, only future instances.

 # To remove all dependencies from the cygserver service

 sc config cygserver depend= /

NFS account mapping

Microsoft's NFS client does not map the uid/gid values on the NFS shares to SIDs. There's no such
thing as a (fake) security descriptor returned to the application. Rather, via an undocumented API an
application can fetch RFC 1813 [https://tools.ietf.org/html/rfc1813] compatible NFSv3 stat information
from the share. This is what Cygwin is using to show stat information for files on NFS shares.

The problem is, while all other information in this stat record, like timestamps, file size etc., can be used
by Cygwin, Cygwin had no way to map the values of the st_uid and st_gid members to a Windows SID
for a long time. So it just faked the file owner info and claimed that it's you.

However, SFU has, over time, developed multiple methods to map UNIX uid/gid values on NFS shares
to Windows SIDs. You'll find the full documentation of the mapping methods in NFS Identity Mapping
in Windows Server 2012 [http://blogs.technet.com/b/filecab/archive/2012/10/09/nfs-identity-mapping-
in-windows-server-2012.aspx]

Cygwin now utilizes the RFC 2307 [https://tools.ietf.org/html/rfc2307] mapping for this purpose. This
is most of the time provided by an AD domain, but it could also be a standalone LDAP mapping server.
Per RFC 2307 [https://tools.ietf.org/html/rfc2307], the uid is in the attribute uidNumber. For groups,
the gid is in the gidNumber attribute.

When Cygwin stat()s files on an NFS share, it asks the mapping server via LDAP in two different ways,
depending on the role of the mapping server.

https://tools.ietf.org/html/rfc1813
https://tools.ietf.org/html/rfc1813
http://blogs.technet.com/b/filecab/archive/2012/10/09/nfs-identity-mapping-in-windows-server-2012.aspx
http://blogs.technet.com/b/filecab/archive/2012/10/09/nfs-identity-mapping-in-windows-server-2012.aspx
http://blogs.technet.com/b/filecab/archive/2012/10/09/nfs-identity-mapping-in-windows-server-2012.aspx
http://blogs.technet.com/b/filecab/archive/2012/10/09/nfs-identity-mapping-in-windows-server-2012.aspx
https://tools.ietf.org/html/rfc2307
https://tools.ietf.org/html/rfc2307
https://tools.ietf.org/html/rfc2307
https://tools.ietf.org/html/rfc2307

Using Cygwin

74

• If the server is an AD domain controller, it asks for an account with uidNumber attribute ==
st_uid field of the stat record returned by NFS. If an account matches, AD returns the Windows
SID, so we have an immediate mapping from UNIX uid to a Windows SID, if the user account has
a valid uidNumber attribute. For groups, the method is the same, just that Cygwin asks for a group
with gidNumber attribute == st_gid field of the stat record.

• If the server is a standalone LDAP mapping server Cygwin asks for the same
uidNumber/gidNumber attributes, but it can't expect that the LDAP server knows anything about
Windows SIDs. Rather, the mapping server returns the account name. Cygwin then asks the DC
for an account with this name, and if that succeeds, we have a mapping between UNIX uid/gid and
Windows SIDs.

The mapping will be cached for the lifetime of the process, and inherited by child processes.

Samba account mapping

A fully set up Samba with domain integration is running winbindd to map Window SIDs to artificially
created UNIX uids and gids, and this mapping is transparent within the domain, so Cygwin doesn't have
to do anything special.

However, setting up winbindd isn't for everybody, and it fails to map Windows accounts to already
existing UNIX users or groups. In contrast to NFS, Samba returns security descriptors, but unmapped
UNIX accounts get special SIDs:

• A UNIX user account with uid X is mapped to the Windows SID S-1-22-1-X.
• A UNIX group account with gid X is mapped to SID S-1-22-2-X.

As you can see, even though we have SIDs, they just reflect the actual uid/gid values on the UNIX box
in the RID value. It's only marginally different from the NFS method, so why not just use the same
method as for NFS?

That's what Cygwin will do. If it encounters a S-1-22-x-y SID, it will perform the same RFC 2307
[https://tools.ietf.org/html/rfc2307] mapping as for NFS shares.

For home users without any Windows domain or LDAP server per RFC 2307 [https://tools.ietf.org/html/
rfc2307], but with a Linux machine running Samba, just add this information to your SAM account.
Assuming the uid of your Linux user account is 505 and the gid of your primary group is, say, 100,
just add the values to your SAM user and group accounts. The following example assumes you didn't
already add something else to the comment field.

To your user's SAM comment (remember: called Description in the GUI), add:

 <cygwin group="Users" unix="505"/>

To the user's group SAM comment add:

 <cygwin unix="100"/>

This should be sufficient to work on your Samba share and to see all files owned by your Linux user
account as your files.

The /etc/nsswitch.conf file

Last, but not least, let's talk about the way to configure how the mapping works on your machine. On
Linux and some other UNIXy OSes, we have a file called /etc/nsswitch.conf [http://linux.die.net/man/5/
nsswitch.conf]. One part of it is to specify how the passwd and group entries are generated. That's what
Cygwin now provides as well.

https://tools.ietf.org/html/rfc2307
https://tools.ietf.org/html/rfc2307
https://tools.ietf.org/html/rfc2307
https://tools.ietf.org/html/rfc2307
https://tools.ietf.org/html/rfc2307
http://linux.die.net/man/5/nsswitch.conf
http://linux.die.net/man/5/nsswitch.conf
http://linux.die.net/man/5/nsswitch.conf

Using Cygwin

75

The /etc/nsswitch.conf file is optional. If you don't have one, Cygwin uses sensible defaults.

Note

The /etc/nsswitch.conf file is read exactly once by the first process of a Cygwin
process tree. If there was no /etc/nsswitch.conf file when this first process started, then
no other process in the running Cygwin process tree will try to read the file.

If you create or change /etc/nsswitch.conf, you have to restart all Cygwin processes
that need to see the change. If the process you want to see the change is a child of another
process, you need to restart all of that process's parents, too.

For example, if you run vim inside the default Cygwin Terminal, vim is a child of your shell,
which is a child of mintty. If you edit /etc/nsswitch.conf in that vim instance, your
shell won't immediately see the change, nor will vim if you restart it from that same shell
instance. This is because both are getting their nsswitch information from their ancestor,
mintty. You have to start a fresh terminal window for the change to take effect.

By contrast, if you leave that Cygwin Terminal window open after making the change to /
etc/nsswitch.conf, then restart a Cygwin service like cron, cron will see the change,
because it is not a child of mintty or any other Cygwin process. (Technically, it is a child of
cygrunsrv, but that instance also restarts when you restart the service.)

The reason we point all this out is that the requirements for restarting things are not quite as
stringent as when you replace cygwin1.dll. If you have three process trees, you have three
independent copies of the nsswitch information. If you start a fresh process tree, it will see the
changes. As long as any process in an existing process tree remains running, all processes in
that tree will continue to use the old information.

So, what settings can we perform with /etc/nsswitch.conf? To explain, lets have a look into an
/etc/nsswitch.conf file set up to all default values:

 # /etc/nsswitch.conf
 passwd: files db
 group: files db

 db_enum: cache builtin

The first line, starting with a hash # is a comment. The hash character starts a comment, just as in shell
scripts. Everything up to the end of the line is ignored. So this:

 foo: bar # baz

means, set "foo" to value "bar", ignore everything after the hash.

The other lines define the available settings. The first word up to a colon is a keyword. Note that the
colon must follow immediately after the keyword. This is a valid line:

 foo: bar

This is not valid:

 foo : bar

Apart from this restriction, the reminder of the line can have as many spaces and TABs as you like.

Now let's have a look at the available keywords and settings.

Using Cygwin

76

The two lines starting with the keywords passwd: and group: define where Cygwin gets its passwd
and group information from. files means, fetch the information from the corresponding file in the /
etc directory. db means, fetch the information from the Windows account databases, the SAM for local
accounts, Active Directory for domain account. Examples:

 passwd: files

Read passwd entries only from /etc/passwd.

 group: db

Read group entries only from SAM/AD.

 group: files # db

Read group entries only from /etc/group (db is only a comment).

 passwd: files db

Read passwd entries from /etc/passwd. If a user account isn't found, try to find it in SAM or AD.
This is the default for both, passwd and group information.

 group: db files

This is a valid entry, but the order will be ignored by Cygwin. If both settings, files and db are
specified, Cygwin will always try the files first, then the db.

The remaining entries define certain aspects of the Windows account database search. Right now, only
one entry is valid:

• db_enum: defines the depth of a database search, if an application calls one of the enumeration
functions getpwent [http://linux.die.net/man/3/getpwent] or getgrent [http://linux.die.net/man/3/
getgrent]. The problem with these functions is, they neither allow to define how many entries will
be enumerated when calling them in a loop, nor do they allow to add some filter criteria. They were
designed back in the days, when only /etc/passwd and /etc/group files existed and the
number of user accounts on a typical UNIX system was seldomly a three-digit number.

These days, with user and group databases sometimes going in the six-digit range, they are a potential
burden. For that reason, Cygwin does not enumerate all user or group accounts by default, but rather
just a very small list, consisting only of the accounts cached in memory by the current process, as well
as a handful of predefined builtin accounts.

db_enum: allows to specify the accounts to enumerate in a fine-grained manner. It takes a list of
sources as argument:

 db_enum: source1 source2 ...

The recognized sources are the following:

none No output from getpwent/getgrent at all.

all The opposite. Enumerates accounts from all known sources, including all
trusted domains.

cache Enumerate all accounts currently cached in memory.

http://linux.die.net/man/3/getpwent
http://linux.die.net/man/3/getpwent
http://linux.die.net/man/3/getgrent
http://linux.die.net/man/3/getgrent
http://linux.die.net/man/3/getgrent

Using Cygwin

77

builtin Enumerate the predefined builtin accounts for backward compatibility.
These are five passwd accounts (SYSTEM, LocalService,
NetworkService, Administrators, TrustedInstaller) and two group accounts
(SYSTEM and TrustedInstaller).

files Enumerate the accounts from /etc/passwd or /etc/group.

local Enumerate all accounts from the local SAM.

primary Enumerate all accounts from the primary domain.

alltrusted Enumerate all accounts from all trusted domains.

some.domain Enumerate all accounts from the trusted domain some.domain. The
trusted domain can be given as Netbios flat name (MY_DOMAIN) or as
dns domain name (my_domain.corp). In contrast to the aforementioned
fixed source keywords, distinct domain names are caseinsensitive. Only
domains which are actually trusted domains are enumerated. Unknown
domains are simply ignored.

Please note that getpwent/getgrent do not test if an account was already listed from another
source, so an account can easily show up twice or three times. Such a test would be rather tricky,
nor does the Linux implementation perform such test. Here are a few examples for /etc/
nsswitch.conf:

 db_enum: none

No output from getpwent/getgrent at all. The first call to the function immediately returns a
NULL pointer.

 db_enum: cache files

Enumerate all accounts cached by the current process, plus all entries from either the /etc/passwd or /
etc/group file.

 db_enum: cache local primary

Enumerate all accounts cached by the current process, all accounts from the SAM of the local
machine, and all accounts from the primary domain of the machine.

 db_enum: local primary alltrusted

Enumerate the accounts from the machine's SAM, from the primary domain of the machine, and from
all trusted domains.

 db_enum: primary domain1.corp sub.domain.corp domain2.net

Enumerate the accounts from the primary domain and from the domains domain1.corp,
sub.domain.corp and domain2.net.

 db_enum: all

Using Cygwin

78

Enumerate everything and the kitchen sink.

File permissions
On NTFS and if the noacl mount option is not specified for a mount point, Cygwin sets file
permissions as on POSIX systems. Basically this is done by defining a Security Descriptor with the
matching owner and group SIDs, and a DACL which contains ACEs for the owner, the group and for
"Everyone", which represents what POSIX calls "others".

There's just one problem when trying to map the POSIX permission model onto the Windows
permission model.

There's a leak in the definition of a "correct" ACL which disallows a certain POSIX permission setting.
The official documentation explains in short the following:

• The requested permissions are checked against all ACEs of the user as well as all groups the user is
member of. The permissions given in these user and groups access allowed ACEs are accumulated
and the resulting set is the set of permissions of that user given for that object.

• The order of ACEs is important. The system reads them in sequence until either any single requested
permission is denied or all requested permissions are granted. Reading stops when this condition is
met. Later ACEs are not taken into account.

• All access denied ACEs should precede any access allowed ACE. ACLs following this rule are called
"canonical"

Note that the last rule is a preference or a definition of correctness. It's not an absolute requirement. All
Windows kernels will correctly deal with the ACL regardless of the order of allow and deny ACEs. The
second rule is not modified to get the ACEs in the preferred order.

Unfortunately the security tab in the file properties dialog of the Windows Explorer insists to rearrange
the order of the ACEs to canonical order before you can read them. Thank God, the sort order remains
unchanged if one presses the Cancel button. But don't even think of pressing OK...

Canonical ACLs are unable to reflect each possible combination of POSIX permissions. Example:

rw-r-xrw-

Ok, so here's the first try to create a matching ACL, assuming the Windows permissions only have three
bits, as their POSIX counterpart:

UserAllow: 110
GroupAllow: 101
OthersAllow: 110

Hmm, because of the accumulation of allow rights the user may execute because the group may execute.

Second try:

UserDeny: 001
GroupAllow: 101
OthersAllow: 110

Now the user may read and write but not execute. Better? No! Unfortunately the group may write now
because others may write.

Third try:

Using Cygwin

79

UserDeny: 001
GroupDeny: 010
GroupAllow: 001
OthersAllow: 110

Now the group may not write as intended but unfortunately the user may not write anymore, either.
How should this problem be solved? According to the canonical order a UserAllow has to follow the
GroupDeny but it's easy to see that this can never be solved that way.

The only chance:

UserDeny: 001
UserAllow: 010
GroupDeny: 010
GroupAllow: 001
OthersAllow: 110

Again: This works on all existing versions of Windows NT, at the time of writing from at least Windows
XP up to Server 2012 R2. Only the GUIs aren't able (or willing) to deal with that order.

Switching the user context
Since Windows XP, Windows users have been accustomed to the "Switch User" feature, which switches
the entire desktop to another user while leaving the original user's desktop "suspended". Another
Windows feature is the "Run as..." context menu entry, which allows you to start an application using
another user account when right-clicking on applications and shortcuts.

On POSIX systems, this operation can be performed by processes running under the privileged user
accounts (usually the "root" user account) on a per-process basis. This is called "switching the user
context" for that process, and is performed using the POSIX setuid and seteuid system calls.

While this sort of feature is available on Windows as well, Windows does not support the concept of
these calls in a simple fashion. Switching the user context in Windows is generally a tricky process with
lots of "behind the scenes" magic involved.

Windows uses so-called `access tokens' to identify a user and its permissions. Usually the access token
is created at logon time and then it's attached to the starting process. Every new process within a session
inherits the access token from its parent process. Every thread can get its own access token, which
allows, for instance, to define threads with restricted permissions.

Switching the user context with password authentication

To switch the user context, the process has to request such an access token for the new user. This is
typically done by calling the Win32 API function LogonUser with the user name and the user's cleartext
password as arguments. If the user exists and the password was specified correctly, the access token
is returned and either used in ImpersonateLoggedOnUser to change the user context of the current
thread, or in CreateProcessAsUser to change the user context of a spawned child process.

Later versions of Windows define new functions in this context and there are also functions to
manipulate existing access tokens (usually only to restrict them). Windows Vista also adds subtokens
which are attached to other access tokens which plays an important role in the UAC (User Access
Control) facility of Vista and later. However, none of these extensions to the original concept are
important for this documentation.

Back to this logon with password, how can this be used to implement set(e)uid? Well, it requires
modification of the calling application. Two Cygwin functions have been introduced to support porting
setuid applications which only require login with passwords. You only give Cygwin the right access

Using Cygwin

80

token and then you can call seteuid or setuid as usual in POSIX applications. Porting such a setuid
application is illustrated by a short example:

/* First include all needed cygwin stuff. */
#ifdef __CYGWIN__
#include <windows.h>
#include <sys/cygwin.h>
#endif

[...]

 struct passwd *user_pwd_entry = getpwnam (username);
 char *cleartext_password = getpass ("Password:");

[...]

#ifdef __CYGWIN__
 /* Patch the typical password test. */
 {
 HANDLE token;

 /* Try to get the access token from Windows. */
 token = cygwin_logon_user (user_pwd_entry, cleartext_password);
 if (token == INVALID_HANDLE_VALUE)
 error_exit;
 /* Inform Cygwin about the new impersonation token. */
 cygwin_set_impersonation_token (token);
 /* Cygwin is now able, to switch to that user context by setuid or seteuid calls. */
 }
#else
 /* Use standard method on non-Cygwin systems. */
 hashed_password = crypt (cleartext_password, salt);
 if (!user_pwd_entry ||
 strcmp (hashed_password, user_pwd_entry->pw_password))
 error_exit;
#endif /* CYGWIN */

[...]

 /* Everything else remains the same! */

 setegid (user_pwd_entry->pw_gid);
 seteuid (user_pwd_entry->pw_uid);
 execl ("/bin/sh", ...);

Switching the user context without password, Method 1: Create a
token from scratch

An unfortunate aspect of the implementation of set(e)uid is the fact that the calling process requires the
password of the user to which to switch. Applications such as sshd wishing to switch the user context
after a successful public key authentication, or the cron application which, again, wants to switch the
user without any authentication are stuck here. But there are other ways to get new user tokens.

One way is just to create a user token from scratch. This is accomplished by using an (officially
undocumented) function on the NT function level. The NT function level is used to implement
the Win32 level, and, as such is closer to the kernel than the Win32 level. The function of interest,
NtCreateToken, allows you to specify user, groups, permissions and almost everything you need to

Using Cygwin

81

create a user token, without the need to specify the user password. The only restriction for using this
function is that the calling process needs the "Create a token object" user right, which only the SYSTEM
user account has by default, and which is considered the most dangerous right a user can have on
Windows systems.

That sounds good. We just start the servers which have to switch the user context (sshd, inetd, cron, ...)
as Windows services under the SYSTEM (or LocalSystem in the GUI) account and everything just
works. Unfortunately that's too simple. Using NtCreateToken has a few drawbacks.

First of all, beginning with Windows Server 2003, the permission "Create a token object" gets explicitly
removed from the SYSTEM user's access token, when starting services under that account. That requires
us to create a new account with this specific permission just to run this kind of services. But that's a
minor problem.

A more important problem is that using NtCreateToken is not sufficient to create a new logon session
for the new user. What does that mean? Every logon usually creates a new logon session. A logon
session has a couple of attributes which are unique to the session. One of these attributes is the fact, that
Windows functions identify the user domain and user name not by the SID of the access token owner,
but only by the logon session the process is running under.

This has the following unfortunate consequence. Consider a service started under the SYSTEM account
(up to Windows XP) switches the user context to DOMAIN\my_user using a token created directly by
calling the NtCreateToken function. A process running under this new access token might want to
know under which user account it's running. The corresponding SID is returned correctly, for instance
S-1-5-21-1234-5678-9012-77777. However, if the same process asks the OS for the user name of
this SID something wierd happens. For instance, the LookupAccountSid function will not return
"DOMAIN\my_user", but "NT AUTHORITY\SYSTEM" as the user name.

You might ask "So what?" After all, this only looks bad, but functionality and permission-wise
everything should be ok. And Cygwin knows about this shortcoming so it will return the correct Cygwin
username when asked. Unfortunately this is more complicated. Some native, non-Cygwin Windows
applications will misbehave badly in this situation. A well-known example are certain versions of
Visual-C++.

Last but not least, you don't have the usual comfortable access to network shares. The reason is that the
token has been created without knowing the password. The password are your credentials necessary
for network access. Thus, if you logon with a password, the password is stored hidden as "token
credentials" within the access token and used as default logon to access network resources. Since these
credentials are missing from the token created with NtCreateToken, you only can access network
shares from the new user's process tree by using explicit authentication, on the command line for
instance:

bash$ net use '\\server\share' /user:DOMAIN\my_user my_users_password

Note that, on some systems, you can't even define a drive letter to access the share, and under some
circumstances the drive letter you choose collides with a drive letter already used in another session.
Therefore it's better to get used to accessing these shares using the UNC path as in

bash$ grep foo //server/share/foofile

Switching the user context without password, Method 2: LSA
authentication package

We're looking for another way to switch the user context without having to provide the password.
Another technique is to create an LSA authentication package. LSA is an acronym for "Local Security

Using Cygwin

82

Authority" which is a protected part of the operating system which only allows changes to become
active when rebooting the system after the change. Also, as soon as the LSA encounters serious
problems (for instance, one of the protected LSA processes died), it triggers a system reboot. LSA is the
part of the OS which cares for the user logons and which also creates logon sessions.

An LSA authentication package is a DLL which has to be installed as part of the LSA. This is done
by tweaking a special registry key. Cygwin provides such an authentication package. It has to be
installed and the machine has to be rebooted to activate it. This is the job of the shell script /usr/bin/
cyglsa-config which is part of the Cygwin package.

After running /usr/bin/cyglsa-config and rebooting the system, the LSA authentication
package is used by Cygwin when set(e)uid is called by an application. The created access token using
this method has its own logon session.

This method has two advantages over the NtCreateToken method.

The very special and very dangerous "Create a token object" user right is not required by a user using
this method. Other privileged user rights are still necessary, especially the "Act as part of the operating
system" right, but that's just business as usual.

The user is correctly identified, even by delicate native applications which choke on that using the
NtCreateToken method.

Disadvantages? Yes, sure, this is Windows. The access token created using LSA authentication still
lacks the credentials for network access. After all, there still hasn't been any password authentication
involved. The requirement to reboot after every installation or deinstallation of the cygwin LSA
authentication DLL is just a minor inconvenience compared to that...

Nevertheless, this is already a lot better than what we get by using NtCreateToken, isn't it?

Switching the user context without password, Method 3: With
password

Ok, so we have solved almost any problem, except for the network access problem. Not being able to
access network shares without having to specify a cleartext password on the command line or in a script
is a harsh problem for automated logons for testing purposes and similar stuff.

Fortunately there is a solution, but it has its own drawbacks. But, first things first, how does it work?
The title of this section says it all. Instead of trying to logon without password, we just logon with
password. The password gets stored two-way encrypted in a hidden, obfuscated area of the registry, the
LSA private registry area. This part of the registry contains, for instance, the passwords of the Windows
services which run under some non-default user account.

So what we do is to utilize this registry area for the purpose of set(e)uid. The Cygwin command passwd
-R allows a user to specify his/her password for storage in this registry area. When this user tries to login
using ssh with public key authentication, Cygwin's set(e)uid examines the LSA private registry area and
searches for a Cygwin specific key which contains the password. If it finds it, it calls LogonUser under
the hood, using this password. If that works, LogonUser returns an access token with all credentials
necessary for network access.

For good measure, and since this way to implement set(e)uid is not only used by Cygwin but also by
Microsoft's SFU (Services for Unix), we also look for a key stored by SFU (using the SFU command
regpwd) and use that if it's available.

We got it. A full access token with its own logon session, with all network credentials. Hmm, that's
heaven...

Using Cygwin

83

Back on earth, what about the drawbacks?

First, adding a password to the LSA private registry area requires administrative access. So calling
passwd -R as a normal user will fail! Cygwin provides a workaround for this. If cygserver is started as
a service running under the SYSTEM account (which is the default way to run cygserver) you can use
passwd -R as normal, non-privileged user as well.

Second, as aforementioned, the password is two-way encrypted in a hidden, obfuscated registry area.
Only SYSTEM has access to this area for listing purposes, so, even as an administrator, you can't
examine this area with regedit. Right? No. Every administrator can start regedit as SYSTEM user:

bash$ date
Tue Dec 2 16:28:03 CET 2008
bash$ at 16:29 /interactive regedit.exe

Additionally, if an administrator knows under which name the private key is stored (which is well-
known since the algorithms used to create the Cygwin and SFU keys are no secret), every administrator
can access the password of all keys stored this way in the registry.

Conclusion: If your system is used exclusively by you, and if you're also the only administrator of your
system, and if your system is adequately locked down to prevent malicious access, you can safely use
this method. If your machine is part of a network which has dedicated administrators, and you're not one
of these administrators, but you (think you) can trust your administrators, you can probably safely use
this method.

In all other cases, don't use this method. You have been warned.

Switching the user context, how does it all fit together?

Now we learned about four different ways to switch the user context using the set(e)uid system call, but
how does set(e)uid really work? Which method does it use now?

The answer is, all four of them. So here's a brief overview what set(e)uid does under the hood:

• When set(e)uid is called, it tests if the user context had been switched by an earlier call already,
and if the new user account is the privileged user account under which the process had been started
originally. If so, it just switches to the original access token of the process it had been started with.

• Next, it tests if an access token has been stored by an earlier call to
cygwin_set_impersonation_token. If so, it tests if that token matches the requested user account. If
so, the stored token is used for the user context switch.

If not, there's no predefined token which can just be used for the user context switch, so we have to
create a new token. The order is as follows.

• Check if the user has stored the logon password in the LSA private registry area, either under a
Cygwin key, or under a SFU key. If so, use this to call LogonUser. If this succeeds, we use the
resulting token for the user context switch.

• Otherwise, check if the Cygwin-specifc LSA authentication package has been installed and is
functional. If so, use the appropriate LSA calls to communicate with the Cygwin LSA authentication
package and use the returned token.

• Last chance, try to use the NtCreateToken call to create a token. If that works, use this token.

• If all of the above fails, our process has insufficient privileges to switch the user context at all, so
set(e)uid fails and returns -1, setting errno to EPERM.

Using Cygwin

84

Cygserver

What is Cygserver?
Cygserver is a program which is designed to run as a background service. It provides Cygwin
applications with services which require security arbitration or which need to persist while no other
cygwin application is running.

The implemented services so far are:

• XSI IPC Message Queues.

• XSI IPC Semaphores.

• XSI IPC Shared Memory.

• Allows non-privileged users to store obfuscated passwords in the registry to be used by setuid and
seteuid calls to create user tokens with network credentials. This service is used by passwd -R. Using
the stored passwords in set(e)uid does not require running Cygserver. For details, see the section
called “Switching the user context”.

• This functionality is no longer used since Cygwin 1.7.6, but the interface is still available: Control
slave tty/pty handle dispersal from tty owner to other processes without compromising the owner
processes' security. Starting with Cygwin 1.7.6 another safe mechanism to share tty/pty handles is
used.

Cygserver command line options
Options to Cygserver take the normal UNIX-style `-X' or `--longoption' form. Nearly all options have
a counterpart in the configuration file (see below) so setting them on the command line isn't really
necessary. Command line options override settings from the Cygserver configuration file.

The one-character options are prepended by a single dash, the long variants are prepended with two
dashes. Arguments to options are marked in angle brackets below. These are not part of the actual
syntax but are used only to denote the arguments. Note that all arguments are required. Cygserver has no
options with optional arguments.

The recognized options are:

• -f, --config-file <file>

Use <file> as configuration file instead of the default configuration line. The default configuration file
is /etc/cygserver.conf. The --help and --version options will print the default configuration pathname.

This option has no counterpart in the configuration file, for obvious reasons.
• -c, --cleanup-threads <num>

Number of threads started to perform cleanup tasks. Default is 2. Configuration file option:
kern.srv.cleanup_threads

• -r, --request-threads <num>

Number of threads started to serve application requests. Default is 10. The -c and -r options can
be used to play with Cygserver's performance under heavy load conditions or on slow machines.
Configuration file option: kern.srv.request_threads

Using Cygwin

85

• -d, --debug

Log debug messages to stderr. These will clutter your stderr output with a lot of information, typically
only useful to developers.

• -e, --stderr

Force logging to stderr. This is the default if stderr is connected to a tty. Otherwise, the default
is logging to the system log. By using the -e, -E, -y, -Y options (or the appropriate settings in the
configuration file), you can explicitly set the logging output as you like, even to both, stderr and
syslog. Configuration file option: kern.log.stderr

• -E, --no-stderr

Don't log to stderr. Configuration file option: kern.log.stderr

• -y, --syslog

Force logging to the system log. This is the default, if stderr is not connected to a tty, e. g. redirected
to a file. Configuration file option: kern.log.syslog

• -Y, --no-syslog

Don't log to syslog. Configuration file option: kern.log.syslog

• -l, --log-level <level>

Set the verbosity level of the logging output. Valid values are between 1 and 7. The default level is 6,
which is relatively chatty. If you set it to 1, you will get only messages which are printed under severe
conditions, which will result in stopping Cygserver itself. Configuration file option: kern.log.level

• -m, --no-sharedmem

Don't start XSI IPC Shared Memory support. If you don't need XSI IPC Shared Memory support, you
can switch it off here. Configuration file option: kern.srv.sharedmem

• -q, --no-msgqueues

Don't start XSI IPC Message Queues. Configuration file option: kern.srv.msgqueues

• -s, --no-semaphores

Don't start XSI IPC Semaphores. Configuration file option: kern.srv.semaphores

• -S, --shutdown

Shutdown a running daemon and exit. Other methods are sending a SIGHUP to the Cygserver PID or,
if running as service, calling `net stop cygserver' or `cygrunsrv -E cygserver'.

• -h, --help

Output usage information and exit.

• -V, --version

Output version information and exit.

How to start Cygserver

Before you run Cygserver for the first time, you should run the /usr/bin/cygserver-config script once.
It creates the default configuration file and, upon request, installs Cygserver as service. The script only
performs a default install, with no further options given to Cygserver when running as service. Due to
the wide configurability by changing the configuration file, that's typically not necessary.

You should always run Cygserver as a service under LocalSystem account. This is the way it is installed
for you by the /usr/bin/cygserver-config script.

Using Cygwin

86

The Cygserver configuration file
Cygserver has many options, which allow you to customize the server to your needs. Customization
is accomplished by editing the configuration file, which is by default /etc/cygserver.conf. This file is
only read once, at startup of Cygserver. There's no option to re-read the file at runtime by, say, sending a
signal to Cygserver.

The configuration file determines how Cygserver operates. There are options which set the number of
threads running in parallel, options for setting how and what to log and options to set various maximum
values for the IPC services.

The default configuration file delivered with Cygserver is installed to /etc/defaults/etc. The /usr/bin/
cygserver-config script copies it to /etc, giving you the option to overwrite an already existing file or to
leave it alone. Therefore, the /etc file is safe to be changed by you, since it will not be overwritten by a
later update installation.

The default configuration file contains many comments which describe everything needed to understand
the settings. A comment at the start of the file describes the syntax rules for the file. The default options
are shown in the file but are commented out.

It is generally a good idea to uncomment only options which you intend to change from the default
values. Since reading the options file on Cygserver startup doesn't take much time, it's also considered
good practice to keep all other comments in the file. This keeps you from searching for clues in other
sources.

Using Cygwin

87

Cygwin Utilities
Cygwin comes with a number of command-line utilities that are used to manage the UNIX emulation
portion of the Cygwin environment. While many of these reflect their UNIX counterparts, each was
written specifically for Cygwin. You may use the long or short option names interchangeably; for
example, --help and -h function identically. All of the Cygwin command-line utilities support the --
help and --version options.

cygcheck

Usage: cygcheck [-v] [-h] PROGRAM
 cygcheck -c [-d] [PACKAGE]
 cygcheck -s [-r] [-v] [-h]
 cygcheck -k
 cygcheck -f FILE [FILE]...
 cygcheck -l [PACKAGE]...
 cygcheck -p REGEXP
 cygcheck --delete-orphaned-installation-keys
 cygcheck --enable-unique-object-names Cygwin-DLL
 cygcheck --disable-unique-object-names Cygwin-DLL
 cygcheck --show-unique-object-names Cygwin-DLL
 cygcheck -h

List system information, check installed packages, or query package database.

At least one command option or a PROGRAM is required, as shown above.

 PROGRAM list library (DLL) dependencies of PROGRAM
 -c, --check-setup show installed version of PACKAGE and verify integrity
 (or for all installed packages if none specified)
 -d, --dump-only just list packages, do not verify (with -c)
 -s, --sysinfo produce diagnostic system information (implies -c -d)
 -r, --registry also scan registry for Cygwin settings (with -s)
 -k, --keycheck perform a keyboard check session (must be run from a
 plain console only, not from a pty/rxvt/xterm)
 -f, --find-package find the package to which FILE belongs
 -l, --list-package list contents of PACKAGE (or all packages if none given)
 -p, --package-query search for REGEXP in the entire cygwin.com package
 repository (requires internet connectivity)
 --delete-orphaned-installation-keys
 Delete installation keys of old, now unused
 installations from the registry. Requires the right
 to change the registry.
 --enable-unique-object-names Cygwin-DLL
 --disable-unique-object-names Cygwin-DLL
 --show-unique-object-names Cygwin-DLL
 Enable, disable, or show the setting of the
 \"unique object names\" setting in the Cygwin DLL
 given as argument to this option. The DLL path must
 be given as valid Windows(!) path.
 See the users guide for more information.
 If you don't know what this means, don't change it.
 -v, --verbose produce more verbose output
 -h, --help annotate output with explanatory comments when given
 with another command, otherwise print this help
 -V, --version print the version of cygcheck and exit

Note: -c, -f, and -l only report on packages that are currently installed. To
 search all official Cygwin packages use -p instead. The -p REGEXP matches

Using Cygwin

88

 package names, descriptions, and names of files/paths within all packages.

The cygcheck program is a diagnostic utility for dealing with Cygwin programs. If you are familiar
with dpkg or rpm, cygcheck is similar in many ways. (The major difference is that setup.exe handles
installing and uninstalling packages; see the section called “Internet Setup” for more information.)

The -c option checks the version and status of installed Cygwin packages. If you specify one or more
package names, cygcheck will limit its output to those packages, or with no arguments it lists all
packages. A package will be marked Incomplete if files originally installed are no longer present.
The best thing to do in that situation is reinstall the package with setup.exe. To see which files are
missing, use the -v option. If you do not need to know the status of each package and want cygcheck to
run faster, add the -d option and cygcheck will only output the name and version for each package.

If you list one or more programs on the command line, cygcheck will diagnose the runtime environment
of that program or programs, providing the names of DLL files on which the program depends. If you
specify the -s option, cygcheck will give general system information. If you list one or more programs
on the command line and specify -s, cygcheck will report on both.

The -f option helps you to track down which package a file came from, and -l lists all files in a
package. For example, to find out about /usr/bin/less and its package:

Example 3.3. Example cygcheck usage

$ cygcheck -f /usr/bin/less
less-381-1

$ cygcheck -l less
/usr/bin/less.exe
/usr/bin/lessecho.exe
/usr/bin/lesskey.exe
/usr/man/man1/less.1
/usr/man/man1/lesskey.1

The -h option prints additional helpful messages in the report, at the beginning of each section. It also
adds table column headings. While this is useful information, it also adds some to the size of the report,
so if you want a compact report or if you know what everything is already, just leave this out.

The -v option causes the output to be more verbose. What this means is that additional information will
be reported which is usually not interesting, such as the internal version numbers of DLLs, additional
information about recursive DLL usage, and if a file in one directory in the PATH also occurs in other
directories on the PATH.

The -r option causes cygcheck to search your registry for information that is relevant to Cygwin
programs. These registry entries are the ones that have "Cygwin" in the name. If you are paranoid about
privacy, you may remove information from this report, but please keep in mind that doing so makes it
harder to diagnose your problems.

In contrast to the other options that search the packages that are installed on your local system, the -p
option can be used to search the entire official Cygwin package repository. It takes as argument a Perl-
compatible regular expression which is used to match package names, package descriptions, and path/
filenames of the contents of packages. This feature requires an active internet connection, since it must
query the cygwin.com web site. In fact, it is equivalent to the search that is available on the Cygwin
package listing [http://cygwin.com/packages/] page.

For example, perhaps you are getting an error because you are missing a certain DLL and you want to
know which package includes that file:

http://cygwin.com/packages/
http://cygwin.com/packages/
http://cygwin.com/packages/

Using Cygwin

89

Example 3.4. Searching all packages for a file

$ cygcheck -p 'cygintl-2\.dll'
Found 1 matches for 'cygintl-2\.dll'.

libintl2-0.12.1-3 GNU Internationalization runtime library

$ cygcheck -p 'libexpat.*\.a'
Found 2 matches for 'libexpat.*\.a'.

expat-1.95.7-1 XML parser library written in C
expat-1.95.8-1 XML parser library written in C

$ cygcheck -p '/ls\.exe'
Found 2 matches for '/ls\.exe'.

coreutils-5.2.1-5 GNU core utilities (includes fileutils, sh-utils and textutils)
coreutils-5.3.0-6 GNU core utilities (includes fileutils, sh-utils and textutils)

Note that this option takes a regular expression, not a glob or wildcard. This means that you need to use
.* if you want something similar to the wildcard * commonly used in filename globbing. Similarly, to
match the period character you should use \. since the . character in a regexp is a metacharacter that
will match any character. Also be aware that the characters such as \ and * are shell metacharacters, so
they must be either escaped or quoted, as in the example above.

The third example above illustrates that if you want to match a whole filename, you should include the
/ path seperator. In the given example this ensures that filenames that happen to end in ls.exe such
as ncftpls.exe are not shown. Note that this use does not mean "look for packages with ls in the
root directory," since the / can match anywhere in the path. It's just there to anchor the match so that it
matches a full filename.

By default the matching is case-sensitive. To get a case insensitive match, begin your regexp with (?i)
which is a PCRE-specific feature. For complete documentation on Perl-compatible regular expression
syntax and options, read the perlre manpage, or one of many websites such as perldoc.com that
document the Perl language.

The cygcheck program should be used to send information about your system for troubleshooting when
requested. When asked to run this command save the output so that you can email it, for example:

$ cygcheck -s -v -r -h > cygcheck_output.txt

Each Cygwin DLL stores its path and installation key in the registry. This allows troubleshooting of
problems which could be a result of having multiple concurrent Cygwin installations. However, if you're
experimenting a lot with different Cygwin installation paths, your registry could accumulate a lot of old
Cygwin installation entries for which the installation doesn't exist anymore. To get rid of these orphaned
registry entries, use the cygcheck --delete-orphaned-installation-keys command.

Each Cygwin DLL generates a key value from its installation path. This value is not only stored in the
registry, it's also used to generate global object names used for interprocess communication. This keeps
different Cygwin installations separate. Processes running under a Cygwin DLL installed in C:\cygwin
don't see processes running under a Cygwin DLL installed in C:\Program Files\cygwin. This allows
running multiple versions of Cygwin DLLs without these versions to interfere with each other, or to run
small third-party installations for a specific purpose independently from a Cygwin net distribution.

For debugging purposes it could be desired that the various Cygwin DLLs use the same key,
independently from their installation paths. If the DLLs have different versions, trying to run processes
under these DLLs concurrently will result in error messages like this one:

Using Cygwin

90

*** shared version mismatch detected - 0x8A88009C/0x75BE0074.
This problem is probably due to using incompatible versions of the Cygwin DLL.
Search for cygwin1.dll using the Windows Start->Find/Search facility
and delete all but the most recent version. The most recent version *should*
reside in x:\\cygwin\\bin, where 'x' is the drive on which you have
installed the cygwin distribution. Rebooting is also suggested if you
are unable to find another Cygwin DLL.

To disable the usage of a unique key value of a certain Cygwin DLL, use the cygcheck --disable-
unique-object-names Cygwin-DLL command. Cygwin-DLL is the Windows path (*not* a Cygwin
POSIX path) to the DLL for which you want to disable this feature. Note that you have to stop all
Cygwin processes running under this DLL, before you're allowed to change this setting. For instance,
run cygcheck from a DOS command line for this purpose.

To re-enable the usage of a unique key, use the cygcheck --enable-unique-object-names Cygwin-DLL
command. This option has the same characteristics as the --disable-unique-object-names
option

Finally, you can use cygcheck --show-unique-object-names Cygwin-DLL to find out if the
given Cygwin DLL use unique object names or not. In contrast to the --disable-... and --
enable-... options, the --show-unique-object-names option also works for Cygwin DLLs
which are currently in use.

cygpath

Usage: cygpath (-d|-m|-u|-w|-t TYPE) [-f FILE] [OPTION]... NAME...
 cygpath [-c HANDLE]
 cygpath [-ADHOPSW]
 cygpath [-F ID]

Convert Unix and Windows format paths, or output system path information

Output type options:

 -d, --dos print DOS (short) form of NAMEs (C:\PROGRA~1\)
 -m, --mixed like --windows, but with regular slashes (C:/WINNT)
 -M, --mode report on mode of file (currently binmode or textmode)
 -u, --unix (default) print Unix form of NAMEs (/cygdrive/c/winnt)
 -w, --windows print Windows form of NAMEs (C:\WINNT)
 -t, --type TYPE print TYPE form: 'dos', 'mixed', 'unix', or 'windows'

Path conversion options:

 -a, --absolute output absolute path
 -l, --long-name print Windows long form of NAMEs (with -w, -m only)
 -p, --path NAME is a PATH list (i.e., '/bin:/usr/bin')
 -s, --short-name print DOS (short) form of NAMEs (with -w, -m only)
 -C, --codepage CP print DOS, Windows, or mixed pathname in Windows
 codepage CP. CP can be a numeric codepage identifier,
 or one of the reserved words ANSI, OEM, or UTF8.
 If this option is missing, cygpath defaults to the
 character set defined by the current locale.

System information:

 -A, --allusers use `All Users' instead of current user for -D, -P
 -D, --desktop output `Desktop' directory and exit
 -H, --homeroot output `Profiles' directory (home root) and exit
 -O, --mydocs output `My Documents' directory and exit

Using Cygwin

91

 -P, --smprograms output Start Menu `Programs' directory and exit
 -S, --sysdir output system directory and exit
 -W, --windir output `Windows' directory and exit
 -F, --folder ID output special folder with numeric ID and exit

Other options:

 -f, --file FILE read FILE for input; use - to read from STDIN
 -o, --option read options from FILE as well (for use with --file)
 -c, --close HANDLE close HANDLE (for use in captured process)
 -i, --ignore ignore missing argument
 -h, --help output usage information and exit
 -V, --version output version information and exit

The cygpath program is a utility that converts Windows native filenames to Cygwin POSIX-style
pathnames and vice versa. It can be used when a Cygwin program needs to pass a file name to a native
Windows program, or expects to get a file name from a native Windows program. Alternatively,
cygpath can output information about the location of important system directories in either format.

The -u and -w options indicate whether you want a conversion to UNIX (POSIX) format (-u) or to
Windows format (-w). Use the -d to get DOS-style (8.3) file and path names. The -m option will output
Windows-style format but with forward slashes instead of backslashes. This option is especially useful
in shell scripts, which use backslashes as an escape character.

In combination with the -w option, you can use the -l and -s options to use normal (long) or DOS-
style (short) form. The -d option is identical to -w and -s together.

The -C option allows to specify a Windows codepage to print DOS and Windows paths created with
one of the -d, -m, or -w options. The default is to use the character set of the current locale defined by
one of the internationalization environment variables LC_ALL, LC_CTYPE, or LANG, see the section
called “Internationalization”. This is sometimes not sufficient for interaction with native Windows tools,
which might expect native, non-ASCII characters in a specific Windows codepage. Console tools, for
instance, might expect pathnames in the current OEM codepage, while graphical tools like Windows
Explorer might expect pathnames in the current ANSI codepage.

The -C option takes a single parameter:

• ANSI, to specify the current ANSI codepage
• OEM, to specify the current OEM (console) codepage
• UTF8, to specify UTF-8.
• A numerical, decimal codepage number, for instance 936 for GBK, 28593 for ISO-8859-3, etc. A

full list of supported codepages is listed on the Microsoft MSDN page Code Page Identifiers [http://
msdn.microsoft.com/en-us/library/dd317756(VS.85).aspx]. A codepage of 0 is the same as if the -C
hasn't been specified at all.

The -p option means that you want to convert a path-style string rather than a single filename. For
example, the PATH environment variable is semicolon-delimited in Windows, but colon-delimited in
UNIX. By giving -p you are instructing cygpath to convert between these formats.

The -i option supresses the print out of the usage message if no filename argument was given. It can be
used in make file rules converting variables that may be omitted to a proper format. Note that cygpath
output may contain spaces (C:\Program Files) so should be enclosed in quotes.

Example 3.5. Example cygpath usage

#!/bin/sh

http://msdn.microsoft.com/en-us/library/dd317756(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd317756(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd317756(VS.85).aspx

Using Cygwin

92

if ["${1}" = ""];
 then
 XPATH=".";
 else
 XPATH="$(cygpath -C ANSI -w "${1}")";
fi
explorer $XPATH &

The capital options -D, -H, -P, -S, and -W output directories used by Windows that are not the same
on all systems, for example -S might output C:\WINNT\system32 or C:\Windows\System32. The -H
shows the Windows profiles directory that can be used as root of home. The -A option forces use of the
"All Users" directories instead of the current user for the -D, -O and -P options. The -F outputs other
special folders specified by their internal numeric code (decimal or 0x-prefixed hex). For valid codes
and symbolic names, see the CSIDL_* definitions in the include file /usr/include/w32api/shlobj.h from
package w32api. The current valid range of codes for folders is 0 (Desktop) to 59 (CDBurn area). By
default the output is in UNIX (POSIX) format; use the -w or -d options to get other formats.

dumper

Usage: dumper [OPTION] FILENAME WIN32PID

Dump core from WIN32PID to FILENAME.core

-d, --verbose be verbose while dumping
-h, --help output help information and exit
-q, --quiet be quiet while dumping (default)
-V, --version output version information and exit

The dumper utility can be used to create a core dump of running Windows process. This core dump can
be later loaded to gdb and analyzed. One common way to use dumper is to plug it into cygwin's Just-
In-Time debugging facility by adding

error_start=x:\path\to\dumper.exe

to the CYGWIN environment variable. Please note that x:\path\to\dumper.exe is Windows-style
and not cygwin path. If error_start is set this way, then dumper will be started whenever some
program encounters a fatal error.

dumper can be also be started from the command line to create a core dump of any running process.
Unfortunately, because of a Windows API limitation, when a core dump is created and dumper exits,
the target process is terminated too.

To save space in the core dump, dumper doesn't write those portions of target process' memory space
that are loaded from executable and dll files and are unchangeable, such as program code and debug
info. Instead, dumper saves paths to files which contain that data. When a core dump is loaded into gdb,
it uses these paths to load appropriate files. That means that if you create a core dump on one machine
and try to debug it on another, you'll need to place identical copies of the executable and dlls in the same
directories as on the machine where the core dump was created.

getconf

Usage: getconf [-v specification] variable_name [pathname]
 getconf -a [pathname]

Using Cygwin

93

Get configuration values

 -v specification Indicate specific version for which configuration
 values shall be fetched.
 -a, --all Print all known configuration values

Other options:

 -h, --help This text
 -V, --version Print program version and exit

The getconf utility prints the value of the configuration variable specified by variable_name.
If no pathname is given, getconf serves as a wrapper for the confstr and sysconf functions,
supporting the symbolic constants defined in the limits.h and unistd.h headers, without their
respective _CS_ or _SC_ prefixes.

If pathname is given, getconf prints the value of the configuration variable for the specified pathname.
In this form, getconf serves as a wrapper for the pathconf function, supporting the symbolic
constants defined in the unistd.h header, without the _PC_ prefix.

If you specify the -v option, the parameter denotes a specification for which the value of
the configuration variable should be printed. Note that the only specifications supported by
Cygwin are POSIX_V7_ILP32_OFFBIG and the legacy POSIX_V6_ILP32_OFFBIG and
XBS5_ILP32_OFFBIG equivalents.

Use the -a option to print a list of all available configuration variables for the system, or given
pathname, and their values.

getfacl

Usage: getfacl [-adn] FILE [FILE2...]

Display file and directory access control lists (ACLs).

 -a, --all display the filename, the owner, the group, and
 the ACL of the file
 -d, --dir display the filename, the owner, the group, and
 the default ACL of the directory, if it exists
 -h, --help output usage information and exit
 -n, --noname display user and group IDs instead of names
 -V, --version output version information and exit

When multiple files are specified on the command line, a blank
line separates the ACLs for each file.

For each argument that is a regular file, special file or directory, getfacl displays the owner, the group,
and the ACL. For directories getfacl displays additionally the default ACL. With no options specified,
getfacl displays the filename, the owner, the group, the setuid (s), setgid (s), and sticky (t) bits if
available, and both the ACL and the default ACL, if it exists. For more information on Cygwin and
Windows ACLs, see the section called “POSIX accounts, permission, and security” in the Cygwin
User's Guide. The format for ACL output is as follows:

 # file: filename
 # owner: name or uid
 # group: name or uid
 # flags: sst
 user::perm
 user:name or uid:perm

Using Cygwin

94

 group::perm
 group:name or gid:perm
 mask:perm
 other:perm
 default:user::perm
 default:user:name or uid:perm
 default:group::perm
 default:group:name or gid:perm
 default:mask:perm
 default:other:perm

kill

Usage: kill [-f] [-signal] [-s signal] pid1 [pid2 ...]
 kill -l [signal]

Send signals to processes

 -f, --force force, using win32 interface if necessary
 -l, --list print a list of signal names
 -s, --signal send signal (use kill --list for a list)
 -h, --help output usage information and exit
 -V, --version output version information and exit

The kill program allows you to send arbitrary signals to other Cygwin programs. The usual purpose is to
end a running program from some other window when ^C won't work, but you can also send program-
specified signals such as SIGUSR1 to trigger actions within the program, like enabling debugging or re-
opening log files. Each program defines the signals they understand.

You may need to specify the full path to use kill from within some shells, including bash, the default
Cygwin shell. This is because bash defines a kill builtin function; see the bash man page under
BUILTIN COMMANDS for more information. To make sure you are using the Cygwin version, try

$ /bin/kill --version

which should give the Cygwin kill version number and copyright information.

Unless you specific the -f option, the "pid" values used by kill are the Cygwin pids, not the Windows
pids. To get a list of running programs and their Cygwin pids, use the Cygwin ps program. ps -W will
display all windows pids.

The kill -l option prints the name of the given signal, or a list of all signal names if no signal is given.

To send a specific signal, use the -signN option, either with a signal number or a signal name (minus
the "SIG" part), as shown in these examples:

Example 3.6. Using the kill command

$ kill 123
$ kill -1 123
$ kill -HUP 123
$ kill -f 123

Here is a list of available signals, their numbers, and some commentary on them, from the file <sys/
signal.h>, which should be considered the official source of this information.

SIGHUP 1 hangup

Using Cygwin

95

SIGINT 2 interrupt
SIGQUIT 3 quit
SIGILL 4 illegal instruction (not reset when caught)
SIGTRAP 5 trace trap (not reset when caught)
SIGABRT 6 used by abort
SIGEMT 7 EMT instruction
SIGFPE 8 floating point exception
SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10 bus error
SIGSEGV 11 segmentation violation
SIGSYS 12 bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal from kill
SIGURG 16 urgent condition on IO channel
SIGSTOP 17 sendable stop signal not from tty
SIGTSTP 18 stop signal from tty
SIGCONT 19 continue a stopped process
SIGCHLD 20 to parent on child stop or exit
SIGCLD 20 System V name for SIGCHLD
SIGTTIN 21 to readers pgrp upon background tty read
SIGTTOU 22 like TTIN for output if (tp->t_local<OSTOP)
SIGIO 23 input/output possible
SIGPOLL 23 System V name for SIGIO
SIGXCPU 24 exceeded CPU time limit
SIGXFSZ 25 exceeded file size limit
SIGVTALRM 26 virtual time alarm
SIGPROF 27 profiling time alarm
SIGWINCH 28 window changed
SIGLOST 29 resource lost (eg, record-lock lost)
SIGPWR 29 power failure
SIGUSR1 30 user defined signal 1
SIGUSR2 31 user defined signal 2

ldd

Usage: ldd [OPTION]... FILE...

Print shared library dependencies

 -h, --help print this help and exit
 -V, --version print version information and exit
 -r, --function-relocs process data and function relocations
 (currently unimplemented)
 -u, --unused print unused direct dependencies
 (currently unimplemented)
 -v, --verbose print all information
 (currently unimplemented)

ldd prints the shared libraries (DLLs) an executable or DLL is linked against. No modifying option is
implemented yet.

locale

Usage: locale [-amvhV]
 or: locale [-ck] NAME
 or: locale [-usfnU]

Get locale-specific information.

Using Cygwin

96

System information:

 -a, --all-locales List all available supported locales
 -m, --charmaps List all available character maps
 -v, --verbose More verbose output

Modify output format:

 -c, --category-name List information about given category NAME
 -k, --keyword-name Print information about given keyword NAME

Default locale information:

 -u, --user Print locale of user's default UI language
 -s, --system Print locale of system default UI language
 -f, --format Print locale of user's regional format settings
 (time, numeric & monetary)
 -n, --no-unicode Print system default locale for non-Unicode programs
 -U, --utf Attach \".UTF-8\" to the result

Other options:

 -h, --help This text
 -V, --version Print program version and exit

locale without parameters prints information about the current locale environment settings.

The -u, -s, -f, and -n options can be used to request the various Windows locale settings. The
purpose is to use this command in scripts to set the POSIX locale variables.

The -u option prints the current user's Windows UI locale to stdout. In Windows Vista and Windows 7
this setting is called the "Display Language"; there was no corresponding user setting in Windows XP.
The -s option prints the systems default instead. The -f option prints the user's setting for time, date,
number and currency. That's equivalent to the setting in the "Formats" or "Regional Options" tab in the
"Region and Language" or "Regional and Language Options" dialog. With the -U option locale appends
a ".UTF-8".

Usage example:

bash$ export LANG=$(locale -uU)
bash$ echo $LANG
en_US.UTF-8
bash$ export LC_TIME=$(locale -fU)
bash$ echo $LC_TIME
de_DE.UTF-8

The -a option is helpful to learn which locales are supported by your Windows machine. It prints all
available locales and the allowed modifiers. Example:

bash$ locale -a
C
C.utf8
POSIX
af_ZA
af_ZA.utf8
am_ET
am_ET.utf8
...
be_BY
be_BY.utf8

Using Cygwin

97

be_BY@latin
...
ca_ES
ca_ES.utf8
ca_ES@euro
catalan
...

The -v option prints more detailed information about each available locale. Example:

bash$ locale -av
locale: af_ZA archive: /cygdrive/c/Windows/system32/kernel32.dll

 language | Afrikaans
territory | South Africa
 codeset | ISO-8859-1

locale: af_ZA.utf8 archive: /cygdrive/c/Windows/system32/kernel32.dll

 language | Afrikaans
territory | South Africa
 codeset | UTF-8

...

locale: ca_ES@euro archive: /cygdrive/c/Windows/system32/kernel32.dll

 language | Catalan
territory | Spain
 codeset | ISO-8859-15

locale: catalan archive: /usr/share/locale/locale.alias

 language | Catalan
territory | Spain
 codeset | ISO-8859-1

...

The -m option prints the names of the available charmaps supported by Cygwin to stdout.

Otherwise, if arguments are given, locale prints the values assigned to these arguments. Arguments can
be names of locale categories (for instance: LC_CTYPE, LC_MONETARY), or names of keywords
supported in the locale categories (for instance: thousands_sep, charmap). The -c option prints
additionally the name of the category. The -k option prints additionally the name of the keyword.
Example:

bash$ locale -ck LC_MESSAGES
LC_MESSAGES
yesexpr="^[yY]"
noexpr="^[nN]"
yesstr="yes"
nostr="no"
messages-codeset="UTF-8"
bash$ locale noexpr
^[nN]

minidumper

Using Cygwin

98

Usage: minidumper [OPTION] FILENAME WIN32PID

Write minidump from WIN32PID to FILENAME.dmp

-t, --type minidump type flags
-n, --nokill don't terminate the dumped process
-d, --verbose be verbose while dumping
-h, --help output help information and exit
-q, --quiet be quiet while dumping (default)
-V, --version output version information and exit

The minidumper utility can be used to create a minidump of a running Windows process. This
minidump can be later analysed using breakpad or Windows debugging tools.

minidumper can be used with cygwin's Just-In-Time debugging facility in exactly the same way as
dumper (See the section called “dumper”).

minidumper can also be started from the command line to create a minidump of any running process.
For compatibility with dumper the target process is terminated after dumping unless the -n option is
given.

mkgroup

Usage: mkgroup [OPTION]...

Write /etc/group-like output to stdout

Don't use this command to generate a local /etc/group file, unless you
really need one. See the Cygwin User's Guide for more information.

Options:

 -l,--local [machine] Print local group accounts of \"machine\",
 from local machine if no machine specified.
 Automatically adding machine prefix for local
 machine depends on settings in /etc/nsswitch.conf.
 -L,--Local machine Ditto, but generate groupname with machine prefix.
 -d,--domain [domain] Print domain groups,
 from current domain if no domain specified.
 -c,--current Print current group.
 -S,--separator char For -L use character char as domain\\group
 separator in groupname instead of default '+'.
 -o,--id-offset offset Change the default offset (0x10000) added to gids
 -g,--group groupname Only return information for the specified group.
 One of -l, -d must be specified, too.
 -b,--no-builtin Don't print BUILTIN groups.
 -U,--unix grouplist Print UNIX groups when using -l on a UNIX Samba
 server. Grouplist is a comma-separated list of
 groupnames or gid ranges (root,-25,50-100).
 Enumerating large ranges can take a long time!
 -h,--help Print this message.
 -v,--version Print version information and exit.

Default is to print local groups on stand-alone machines, plus domain
groups on domain controllers and domain member machines.

The mkgroup program can be used to create a local /etc/group file. Cygwin doesn't need this file,
because it reads group information from the Windows account databases, but you can add an /etc/
group file for instance, if your machine is often disconnected from its domain controller.

Using Cygwin

99

Note that this information is static, in contrast to the information automatically gathered by Cygwin
from the Windows account databases. If you change the group information on your system, you'll need
to regenerate the group file for it to have the new information.

By default, the information generated by mkgroup is equivalent to the information generated by
Cygwin itself. The -d and -l/-L options allow you to specify where the information comes from,
some domain, or the local SAM of a machine. Note that you can only enumerate accounts from trusted
domains. Any non-trusted domain will be ignored. Access-restrictions of your current account apply.
The -l/-L when used with a machine name, tries to contact that machine to enumerate local groups
of other machines, typically outside of domains. This scenario cannot be covered by Cygwin's account
automatism. If you want to use the -L option, but you don't like the default domain/group separator
from /etc/nsswitch.conf, you can specify another separator using the -S option, for instance:

Example 3.7. Setting up group entry for current user with different domain/group
separator

$ mkgroup -L server1 -S= > /etc/group

For very simple needs, an entry for the current user's group can be created by using the option -c.

The -o option allows for (unlikely) special cases with multiple machines where the GIDs might
match otherwise. The -g option only prints the information for one group. The -U option allows you
to enumerate the standard UNIX groups on a Samba machine. It's used together with -l samba-
server or -L samba-server. The normal UNIX groups are usually not enumerated, but they can
show up as a group in ls -l output.

mkpasswd

Usage: mkpasswd [OPTIONS]...

Write /etc/passwd-like output to stdout

Don't use this command to generate a local /etc/passwd file, unless you
really need one. See the Cygwin User's Guide for more information.

Options:

 -l,--local [machine] Print local user accounts of \"machine\",
 from local machine if no machine specified.
 Automatically adding machine prefix for local
 machine depends on settings in /etc/nsswitch.conf.
 -L,--Local machine Ditto, but generate username with machine prefix.
 -d,--domain [domain] Print domain accounts,
 from current domain if no domain specified.
 -c,--current Print current user.
 -S,--separator char For -L use character char as domain\\user
 separator in username instead of the default '+'.
 -o,--id-offset offset Change the default offset (0x10000) added to uids
 of foreign local machine accounts. Use with -l/-L.
 -u,--username username Only return information for the specified user.
 One of -l, -d must be specified, too
 -b,--no-builtin Don't print BUILTIN users.
 -p,--path-to-home path Use specified path instead of user account home dir
 or /home prefix.
 -U,--unix userlist Print UNIX users when using -l on a UNIX Samba
 server. Userlist is a comma-separated list of
 usernames or uid ranges (root,-25,50-100).

Using Cygwin

100

 Enumerating large ranges can take a long time!
 -h,--help Displays this message.
 -V,--version Version information and exit.

Default is to print local accounts on stand-alone machines, domain accounts
on domain controllers and domain member machines.

The mkpasswd program can be used to create a /etc/passwd file. Cygwin doesn't need this file,
because it reads user information from the Windows account databases, but you can add an /etc/
passwd file, for instance if your machine is often disconnected from its domain controller.

Note that this information is static, in contrast to the information automatically gathered by Cygwin
from the Windows account databases. If you change the user information on your system, you'll need to
regenerate the passwd file for it to have the new information.

By default, the information generated by mkpasswd is equivalent to the information generated by
Cygwin itself. The -d and -l/-L options allow you to specify where the information comes from,
some domain, or the local SAM of a machine. Note that you can only enumerate accounts from trusted
domains. Any non-trusted domain will be ignored. Access-restrictions of your current account apply.
The -l/-L when used with a machine name, tries to contact that machine to enumerate local groups
of other machines, typically outside of domains. This scenario cannot be covered by Cygwin's account
automatism. If you want to use the -L option, but you don't like the default domain/group separator
from /etc/nsswitch.conf, you can specify another separator using the -S option, analog to
mkgroup.

For very simple needs, an entry for the current user can be created by using the option -c.

The -o option allows for special cases (such as multiple domains) where the UIDs might match
otherwise. The -p option causes mkpasswd to use the specified prefix instead of the account home dir
or /home/ . For example, this command:

Example 3.8. Using an alternate home root

$ mkpasswd -l -p "$(cygpath -H)" > /etc/passwd

would put local users' home directories in the Windows 'Profiles' directory. The -u option creates just
an entry for the specified user. The -U option allows you to enumerate the standard UNIX users on a
Samba machine. It's used together with -l samba-server or -L samba-server. The normal
UNIX users are usually not enumerated, but they can show up as file owners in ls -l output.

mount

Usage: mount [OPTION] [<win32path> <posixpath>]
 mount -a
 mount <posixpath>

Display information about mounted filesystems, or mount a filesystem

 -a, --all mount all filesystems mentioned in fstab
 -c, --change-cygdrive-prefix change the cygdrive path prefix to <posixpath>
 -f, --force force mount, don't warn about missing mount
 point directories
 -h, --help output usage information and exit
 -m, --mount-entries write fstab entries to replicate mount points
 and cygdrive prefixes

Using Cygwin

101

 -o, --options X[,X...] specify mount options
 -p, --show-cygdrive-prefix show user and/or system cygdrive path prefix
 -V, --version output version information and exit

The mount program is used to map your drives and shares onto Cygwin's simulated POSIX directory
tree, much like as is done by mount commands on typical UNIX systems. However, in contrast to mount
points given in /etc/fstab, mount points created or changed with mount are not persistent. They
disappear immediately after the last process of the current user exited. Please see the section called “The
Cygwin Mount Table” for more information on the concepts behind the Cygwin POSIX file system and
strategies for using mounts. To remove mounts temporarily, use umount

Using mount

If you just type mount with no parameters, it will display the current mount table for you.

Example 3.9. Displaying the current set of mount points

$ mount
C:/cygwin/bin on /usr/bin type ntfs (binary)
C:/cygwin/lib on /usr/lib type ntfs (binary)
C:/cygwin on / type ntfs (binary)
C: on /mnt/c type ntfs (binary,user,noumount)
D: on /mnt/d type fat (binary,user,noumount)

In this example, c:/cygwin is the POSIX root and the D drive is mapped to /mnt/d. Note that in this
case, the root mount is a system-wide mount point that is visible to all users running Cygwin programs,
whereas the /mnt/d mount is only visible to the current user.

The mount utility is also the mechanism for adding new mounts to the mount table in memory. The
following example demonstrates how to mount the directory //pollux/home/joe/data to /data
for the duration of the current session.

Example 3.10. Adding mount points

$ ls /data
ls: /data: No such file or directory
$ mount //pollux/home/joe/data /data
mount: warning - /data does not exist!
$ mount
//pollux/home/joe/data on /data type smbfs (binary)
C:/cygwin/bin on /usr/bin type ntfs (binary)
C:/cygwin/lib on /usr/lib type ntfs (binary)
C:/cygwin on / type ntfs (binary)
C: on /c type ntfs (binary,user,noumount)
D: on /d type fat (binary,user,noumount)

A given POSIX path may only exist once in the mount table. Attempts to replace the mount will fail
with a busy error. The -f (force) option causes the old mount to be silently replaced with the new one,
provided the old mount point was a user mount point. It's not valid to replace system-wide mount points.
Additionally, the -f option will silence warnings about the non-existence of directories at the Win32
path location.

The -o option is the method via which various options about the mount point may be recorded. The
following options are available (note that most of the options are duplicates of other mount flags):

Using Cygwin

102

 acl - Use the filesystem's access control lists (ACLs) to
 implement real POSIX permissions (default).
 binary - Files default to binary mode (default).
 bind - Allows to remount part of the file hierarchy somewhere else.
 Different from other mount calls, the first argument
 specifies an absolute POSIX path, rather than a Win32 path.
 This POSIX path is remounted to the POSIX path specified as
 the second parameter. The conversion to a Win32 path is done
 within Cygwin immediately at the time of the call. Note that
 symlinks are ignored while performing this path conversion.
 cygexec - Treat all files below mount point as cygwin executables.
 dos - Always convert leading spaces and trailing dots and spaces to
 characters in the UNICODE private use area. This allows to use
 broken filesystems which only allow DOS filenames, even if they
 are not recognized as such by Cygwin.
 exec - Treat all files below mount point as executable.
 ihash - Always fake inode numbers rather than using the ones returned
 by the filesystem. This allows to use broken filesystems which
 don't return unambiguous inode numbers, even if they are not
 recognized as such by Cygwin.
 noacl - Ignore ACLs and fake POSIX permissions.
 nosuid - No suid files are allowed (currently unimplemented)
 notexec - Treat all files below mount point as not executable.
 override - Override immutable mount points.
 posix=0 - Switch off case sensitivity for paths under this mount point.
 posix=1 - Switch on case sensitivity for paths under this mount point
 (default).
 sparse - Switch on support for sparse files. This option only makes
 sense on NTFS and then only if you really need sparse files.
 text - Files default to CRLF text mode line endings.

For a more complete description of the mount options and the /etc/fstab file, see the section called
“The Cygwin Mount Table”.

Note that all mount points added with mount are user mount points. System mount points can only be
specified in the /etc/fstab file.

If you added mount points to /etc/fstab or your /etc/fstab.d/<username> file, you can add
these mount points to your current user session using the -a/--all option, or by specifing the posix
path alone on the command line. As an example, consider you added a mount point with the POSIX path
/my/mount. You can add this mount point with either one of the following two commands to your
current user session.

$ mount /my/mount
$ mount -a

The first command just adds the /my/mount mount point to your current session, the mount -a adds
all new mount points to your user session.

If you change a mount point to point to another native path, or if you changed the flags of a mount
point, you have to umount the mount point first, before you can add it again. Please note that all such
added mount points are added as user mount points, and that the rule that system mount points can't be
removed or replaced in a running session still applies.

To bind a POSIX path to another POSIX path, use the bind mount flag.

$ mount -o bind /var /usr/var

This command makes the file hirarchy under /var additionally available under /usr/var.

Using Cygwin

103

The -m option causes the mount utility to output the current mount table in a series of fstab entries. You
can save this output as a backup when experimenting with the mount table. Copy the output to /etc/
fstab to restore the old state. It also makes moving your settings to a different machine much easier.

Cygdrive mount points

Whenever Cygwin cannot use any of the existing mounts to convert from a particular Win32 path to a
POSIX one, Cygwin will, instead, convert to a POSIX path using a default mount point: /cygdrive.
For example, if Cygwin accesses z:\foo and the z drive is not currently in the mount table, then z:\
will be accessible as /cygdrive/z. The mount utility can be used to change this default automount
prefix through the use of the "--change-cygdrive-prefix" option. In the following example, we will set
the automount prefix to /mnt:

Example 3.11. Changing the default prefix

$ mount --change-cygdrive-prefix /mnt

Note that the cygdrive prefix can be set both per-user and system-wide, and that as with all mounts, a
user-specific mount takes precedence over the system-wide setting. The mount utility creates system-
wide mounts by default if you do not specify a type. You can always see the user and system cygdrive
prefixes with the -p option. Using the --options flag with --change-cygdrive-prefix
makes all new automounted filesystems default to this set of options. For instance (using the short form
of the command line flags)

Example 3.12. Changing the default prefix with specific mount options

$ mount -c /mnt -o binary,noacl

Limitations

Limitations: there is a hard-coded limit of 64 mount points (up to Cygwin 1.7.9: 30 mount points). Also,
although you can mount to pathnames that do not start with "/", there is no way to make use of such
mount points.

Normally the POSIX mount point in Cygwin is an existing empty directory, as in standard UNIX. If
this is the case, or if there is a place-holder for the mount point (such as a file, a symbolic link pointing
anywhere, or a non-empty directory), you will get the expected behavior. Files present in a mount point
directory before the mount become invisible to Cygwin programs.

It is sometimes desirable to mount to a non-existent directory, for example to avoid cluttering the root
directory with names such as a, b, c pointing to disks. Although mount will give you a warning, most
everything will work properly when you refer to the mount point explicitly. Some strange effects can
occur however. For example if your current working directory is /dir, say, and /dir/mtpt is a
mount point, then mtpt will not show up in an ls or echo * command and find . will not find mtpt.

passwd

Usage: passwd [OPTION] [USER]

Change USER's password or password attributes.

User operations:
 -l, --lock lock USER's account.
 -u, --unlock unlock USER's account.

Using Cygwin

104

 -c, --cannot-change USER can't change password.
 -C, --can-change USER can change password.
 -e, --never-expires USER's password never expires.
 -E, --expires USER's password expires according to system's
 password aging rule.
 -p, --pwd-not-required no password required for USER.
 -P, --pwd-required password is required for USER.
 -R, --reg-store-pwd enter password to store it in the registry for
 later usage by services to be able to switch
 to this user context with network credentials.

System operations:
 -i, --inactive NUM set NUM of days before inactive accounts are disabled
 (inactive accounts are those with expired passwords).
 -n, --minage MINDAYS set system minimum password age to MINDAYS days.
 -x, --maxage MAXDAYS set system maximum password age to MAXDAYS days.
 -L, --length LEN set system minimum password length to LEN.

Other options:
 -d, --logonserver SERVER connect to SERVER (e.g. domain controller).
 Default server is the local system, unless
 changing the current user, in which case the
 default is the content of $LOGONSERVER.
 -S, --status display password status for USER (locked, expired,
 etc.) plus global system password settings.
 -h, --help output usage information and exit.
 -V, --version output version information and exit.

If no option is given, change USER's password. If no user name is given,
operate on current user. System operations must not be mixed with user
operations. Don't specify a USER when triggering a system operation.

Don't specify a user or any other option together with the -R option.
Non-Admin users can only store their password if cygserver is running.
Note that storing even obfuscated passwords in the registry is not overly
secure. Use this feature only if the machine is adequately locked down.
Don't use this feature if you don't need network access within a remote
session. You can delete your stored password by using `passwd -R' and
specifying an empty password.

passwd changes passwords for user accounts. A normal user may only change the password for their
own account, but administrators may change passwords on any account. passwd also changes account
information, such as password expiry dates and intervals.

For password changes, the user is first prompted for their old password, if one is present. This password
is then encrypted and compared against the stored password. The user has only one chance to enter the
correct password. The administrators are permitted to bypass this step so that forgotten passwords may
be changed.

The user is then prompted for a replacement password. passwd will prompt twice for this replacement
and compare the second entry against the first. Both entries are required to match in order for the
password to be changed.

After the password has been entered, password aging information is checked to see if the user is
permitted to change their password at this time. If not, passwd refuses to change the password and exits.

To get current password status information, use the -S option. Administrators can use passwd to
perform several account maintenance functions (users may perform some of these functions on their
own accounts). Accounts may be locked with the -l flag and unlocked with the -u flag. Similarly, -c
disables a user's ability to change passwords, and -C allows a user to change passwords. For password
expiry, the -e option disables expiration, while the -E option causes the password to expire according

Using Cygwin

105

to the system's normal aging rules. Use -p to disable the password requirement for a user, or -P to
require a password.

Administrators can also use passwd to change system-wide password expiry and length requirements
with the -i, -n, -x, and -L options. The -i option is used to disable an account after the password has
been expired for a number of days. After a user account has had an expired password for NUM days,
the user may no longer sign on to the account. The -n option is used to set the minimum number of
days before a password may be changed. The user will not be permitted to change the password until
MINDAYS days have elapsed. The -x option is used to set the maximum number of days a password
remains valid. After MAXDAYS days, the password is required to be changed. Allowed values for the
above options are 0 to 999. The -L option sets the minimum length of allowed passwords for users who
don't belong to the administrators group to LEN characters. Allowed values for the minimum password
length are 0 to 14. In any of the above cases, a value of 0 means `no restrictions'.

All operations affecting the current user are by default run against the logon server of the current user
(taken from the environment variable LOGONSERVER. When password or account information of other
users should be changed, the default server is the local system. To change a user account on a remote
machine, use the -d option to specify the machine to run the command against. Note that the current
user must be a valid member of the administrators group on the remote machine to perform such actions.

Users can use the passwd -R to enter a password which then gets stored in a special area of the registry
on the local system, which is also used by Windows to store passwords of accounts running Windows
services. When a privileged Cygwin application calls the set{e}uid(user_id) system call, Cygwin
checks if a password for that user has been stored in this registry area. If so, it uses this password to
switch to this user account using that password. This allows you to logon through, for instance, ssh with
public key authentication and get a full qualified user token with all credentials for network access.
However, the method has some drawbacks security-wise. This is explained in more detail in the section
called “POSIX accounts, permission, and security”.

Please note that storing passwords in that registry area is a privileged operation which only
administrative accounts are allowed to do. Administrators can enter the password for other user accounts
into the registry by specifying the username on the commandline. If normal, non-admin users should be
allowed to enter their passwords using passwd -R, it's required to run cygserver as a service under the
LocalSystem account before running passwd -R. This only affects storing passwords. Using passwords
in privileged processes does not require cygserver to run.

Limitations: Users may not be able to change their password on some systems.

pldd

Usage: pldd [OPTION...] PID

List dynamic shared objects loaded into a process.

 -?, --help Give this help list
 --usage Give a short usage message
 -V, --version Print program version

pldd prints the shared libraries (DLLs) loaded by the process with the given PID.

ps

Usage: ps [-aefls] [-u UID]

Report process status

Using Cygwin

106

 -a, --all show processes of all users
 -e, --everyone show processes of all users
 -f, --full show process uids, ppids
 -h, --help output usage information and exit
 -l, --long show process uids, ppids, pgids, winpids
 -p, --process show information for specified PID
 -s, --summary show process summary
 -u, --user list processes owned by UID
 -V, --version output version information and exit
 -W, --windows show windows as well as cygwin processes
With no options, ps outputs the long format by default

The ps program gives the status of all the Cygwin processes running on the system (ps = "process
status"). Due to the limitations of simulating a POSIX environment under Windows, there is little
information to give.

The PID column is the process ID you need to give to the kill command. The PPID is the parent process
ID, and PGID is the process group ID. The WINPID column is the process ID displayed by NT's Task
Manager program. The TTY column gives which pseudo-terminal a process is running on, or a '?' for
services. The UID column shows which user owns each process. STIME is the time the process was
started, and COMMAND gives the name of the program running. Listings may also have a status flag in
column zero; S means stopped or suspended (in other words, in the background), I means waiting for
input or interactive (foreground), and O means waiting to output.

By default, ps will only show processes owned by the current user. With either the -a or -e option,
all user's processes (and system processes) are listed. There are historical UNIX reasons for the
synonomous options, which are functionally identical. The -f option outputs a "full" listing with
usernames for UIDs. The -l option is the default display mode, showing a "long" listing with all
the above columns. The other display option is -s, which outputs a shorter listing of just PID, TTY,
STIME, and COMMAND. The -u option allows you to show only processes owned by a specific user.
The -p option allows you to show information for only the process with the specified PID. The -W
option causes ps show non-Cygwin Windows processes as well as Cygwin processes. The WINPID is
also the PID, and they can be killed with the Cygwin kill command's -f option.

regtool

Usage: regtool [OPTION] (add|check|get|list|remove|unset|load|unload|save) KEY

View or edit the Win32 registry

Actions:

 add KEY\SUBKEY add new SUBKEY
 check KEY exit 0 if KEY exists, 1 if not
 get KEY\VALUE prints VALUE to stdout
 list KEY list SUBKEYs and VALUEs
 remove KEY remove KEY
 set KEY\VALUE [data ...] set VALUE
 unset KEY\VALUE removes VALUE from KEY
 load KEY\SUBKEY PATH load hive from PATH into new SUBKEY
 unload KEY\SUBKEY unload hive and remove SUBKEY
 save KEY\SUBKEY PATH save SUBKEY into new hive PATH

Options for 'list' Action:

 -k, --keys print only KEYs
 -l, --list print only VALUEs

Using Cygwin

107

 -p, --postfix like ls -p, appends '\' postfix to KEY names

Options for 'get' Action:

 -b, --binary print REG_BINARY data as hex bytes
 -n, --none print data as stream of bytes as stored in registry
 -x, --hex print numerical data as hex numbers

Options for 'set' Action:

 -b, --binary set type to REG_BINARY (hex args or '-')
 -D, --dword-be set type to REG_DWORD_BIG_ENDIAN
 -e, --expand-string set type to REG_EXPAND_SZ
 -i, --integer set type to REG_DWORD
 -m, --multi-string set type to REG_MULTI_SZ
 -n, --none set type to REG_NONE
 -Q, --qword set type to REG_QWORD
 -s, --string set type to REG_SZ

Options for 'set' and 'unset' Actions:

 -K<c>, --key-separator[=]<c> set key separator to <c> instead of '\'

Other Options:

 -h, --help output usage information and exit
 -q, --quiet no error output, just nonzero return if KEY/VALUE missing
 -v, --verbose verbose output, including VALUE contents when applicable
 -w, --wow64 access 64 bit registry view (ignored on 32 bit Windows)
 -W, --wow32 access 32 bit registry view (ignored on 32 bit Windows)
 -V, --version output version information and exit

KEY is in the format [host]\prefix\KEY\KEY\VALUE, where host is optional
remote host in either \\hostname or hostname: format and prefix is any of:
 root HKCR HKEY_CLASSES_ROOT (local only)
 config HKCC HKEY_CURRENT_CONFIG (local only)
 user HKCU HKEY_CURRENT_USER (local only)
 machine HKLM HKEY_LOCAL_MACHINE
 users HKU HKEY_USERS

You can use forward slash ('/') as a separator instead of backslash, in
that case backslash is treated as escape character
Example: regtool.exe get '\user\software\Microsoft\Clock\iFormat'

The regtool program allows shell scripts to access and modify the Windows registry. Note that
modifying the Windows registry is dangerous, and carelessness here can result in an unusable system.
Be careful.

The -v option means "verbose". For most commands, this causes additional or lengthier messages to
be printed. Conversely, the -q option supresses error messages, so you can use the exit status of the
program to detect if a key exists or not (for example).

The -w option allows you to access the 64 bit view of the registry. Several subkeys exist in a 32 bit
and a 64 bit version when running on Windows 64. Since Cygwin is running in 32 bit mode, it only has
access to the 32 bit view of these registry keys. When using the -w switch, the 64 bit view is used and
regtool can access the entire registry. This option is simply ignored when running on 32 bit Windows
versions.

The -W option allows you to access the 32 bit view on the registry. The purpose of this option is mainly
for symmetry. It permits creation of OS agnostic scripts which would also work in a hypothetical 64 bit
version of Cygwin.

Using Cygwin

108

You must provide regtool with an action following options (if any). Currently, the action must be add,
set, check, get, list, remove, set, or unset.

The add action adds a new key. The check action checks to see if a key exists (the exit code of the
program is zero if it does, nonzero if it does not). The get action gets the value of a key, and prints it
(and nothing else) to stdout. Note: if the value doesn't exist, an error message is printed and the program
returns a non-zero exit code. If you give -q, it doesn't print the message but does return the non-zero
exit code.

The list action lists the subkeys and values belonging to the given key. With list, the -k option
instructs regtool to print only KEYs, and the -l option to print only VALUEs. The -p option postfixes
a '/' to each KEY, but leave VALUEs with no postfix. The remove action removes a key. Note that
you may need to remove everything in the key before you may remove it, but don't rely on this stopping
you from accidentally removing too much.

The get action prints a value within a key. With the -b option, data is printed as hex bytes. -n allows
to print the data as a typeless stream of bytes. Integer values (REG_DWORD, REG_QWORD) are
usually printed as decimal values. The -x option allows to print the numbers as hexadecimal values.

The set action sets a value within a key. -b means it's binary data (REG_BINARY). The binary values
are specified as hex bytes in the argument list. If the argument is '-', binary data is read from stdin
instead. -d or -i means the value is a 32 bit integer value (REG_DWORD). -D means the value is a
32 bit integer value in Big Endian representation (REG_DWORD_BIG_ENDIAN). -Q means the value
is a 64 bit integer value (REG_QWORD). -s means the value is a string (REG_SZ). -e means it's an
expanding string (REG_EXPAND_SZ) that contains embedded environment variables. -m means it's a
multi-string (REG_MULTI_SZ). If you don't specify one of these, regtool tries to guess the type based
on the value you give. If it looks like a number, it's a DWORD, unless it's value doesn't fit into 32 bit,
in which case it's a QWORD. If it starts with a percent, it's an expanding string. If you give multiple
values, it's a multi-string. Else, it's a regular string.

The unset action removes a value from a key.

The load action adds a new subkey and loads the contents of a registry hive into it. The parent key
must be HKEY_LOCAL_MACHINE or HKEY_USERS. The unload action unloads the file and
removes the subkey.

The save action saves a subkey into a registry hive.

By default, the last "\" or "/" is assumed to be the separator between the key and the value. You can use
the -K option to provide an alternate key/value separator character.

setfacl

Usage: setfacl [-r] {-f ACL_FILE | -s acl_entries} FILE...
 setfacl [-r] {-b|[-d acl_entries] [-m acl_entries]} FILE...

Modify file and directory access control lists (ACLs)

 -b, --remove-all remove all extended ACL entries
 -d, --delete delete one or more specified ACL entries
 -f, --file set ACL entries for FILE to ACL entries read
 from a ACL_FILE
 -m, --modify modify one or more specified ACL entries
 -r, --replace replace mask entry with maximum permissions
 needed for the file group class

Using Cygwin

109

 -s, --substitute substitute specified ACL entries for the
 ACL of FILE
 -h, --help output usage information and exit
 -V, --version output version information and exit

At least one of (-b, -d, -f, -m, -s) must be specified

For each file given as parameter, setfacl will either replace its complete ACL (-s, -f), or it will add,
modify, or delete ACL entries. For more information on Cygwin and Windows ACLs, see see the
section called “POSIX accounts, permission, and security” in the Cygwin User's Guide.

Acl_entries are one or more comma-separated ACL entries from the following list:

 u[ser]::perm
 u[ser]:uid:perm
 g[roup]::perm
 g[roup]:gid:perm
 m[ask]::perm
 o[ther]::perm

Default entries are like the above with the additional default identifier. For example:

 d[efault]:u[ser]:uid:perm

perm is either a 3-char permissions string in the form "rwx" with the character '-' for no permission or
it is the octal representation of the permissions, a value from 0 (equivalent to "---") to 7 ("rwx"). uid is a
user name or a numerical uid. gid is a group name or a numerical gid.

The following options are supported:

-b Remove all extended ACL entries. The base ACL entries of the owner, group and others are
retained.

-d Delete one or more specified entries from the file's ACL. The owner, group and others entries must
not be deleted. Acl_entries to be deleted should be specified without permissions, as in the following
list:

 u[ser]:uid[:]
 g[roup]:gid[:]
 m[ask][:]
 d[efault]:u[ser][:uid]
 d[efault]:g[roup][:gid]
 d[efault]:m[ask][:]
 d[efault]:o[ther][:]

-f Take the Acl_entries from ACL_FILE one per line. Whitespace characters are ignored, and the
character "#" may be used to start a comment. The special filename "-" indicates reading from stdin.
Note that you can use this with getfacl and setfacl to copy ACLs from one file to another:

$ getfacl source_file | setfacl -f - target_file

Required entries are: one user entry for the owner of the file, one group entry for the group of the file,
and one other entry.

If additional user and group entries are given: a mask entry for the file group class of the file, and no
duplicate user or group entries with the same uid/gid.

Using Cygwin

110

If it is a directory: one default user entry for the owner of the file, one default group entry for the group
of the file, one default mask entry for the file group class, and one default other entry.

-m Add or modify one or more specified ACL entries. Acl_entries is a comma-separated list of entries
from the same list as above.

-r Causes the permissions specified in the mask entry to be ignored and replaced by the maximum
permissions needed for the file group class.

-s Like -f, but substitute the file's ACL with Acl_entries specified in a comma-separated list on the
command line.

While the -d and -m options may be used in the same command, the -f and -s options may be used
only exclusively.

Directories may contain default ACL entries. Files created in a directory that contains default
ACL entries will have permissions according to the combination of the current umask, the explicit
permissions requested and the default ACL entries

setmetamode

Usage: setmetamode [metabit|escprefix]

Get or set keyboard meta mode

 Without argument, it shows the current meta key mode.
 metabit|meta|bit The meta key sets the top bit of the character.
 escprefix|esc|prefix The meta key sends an escape prefix.

Other options:

 -h, --help This text
 -V, --version Print program version and exit

setmetamode can be used to determine and set the key code sent by the meta (aka Alt) key.

ssp

Usage: ssp [options] low_pc high_pc command...

Single-step profile COMMAND

 -c, --console-trace trace every EIP value to the console. *Lots* slower.
 -d, --disable disable single-stepping by default; use
 OutputDebugString ("ssp on") to enable stepping
 -e, --enable enable single-stepping by default; use
 OutputDebugString ("ssp off") to disable stepping
 -h, --help output usage information and exit
 -l, --dll enable dll profiling. A chart of relative DLL usage
 is produced after the run.
 -s, --sub-threads trace sub-threads too. Dangerous if you have
 race conditions.
 -t, --trace-eip trace every EIP value to a file TRACE.SSP. This
 gets big *fast*.
 -v, --verbose output verbose messages about debug events.
 -V, --version output version information and exit

Using Cygwin

111

Example: ssp 0x401000 0x403000 hello.exe

SSP - The Single Step Profiler

Original Author: DJ Delorie

The SSP is a program that uses the Win32 debug API to run a program one ASM instruction at a time.
It records the location of each instruction used, how many times that instruction is used, and all function
calls. The results are saved in a format that is usable by the profiling program gprof, although gprof will
claim the values are seconds, they really are instruction counts. More on that later.

Because the SSP was originally designed to profile the Cygwin DLL, it does not automatically select
a block of code to report statistics on. You must specify the range of memory addresses to keep track
of manually, but it's not hard to figure out what to specify. Use the "objdump" program to determine
the bounds of the target's ".text" section. Let's say we're profiling cygwin1.dll. Make sure you've built it
with debug symbols (else gprof won't run) and run objdump like this:

$ objdump -h cygwin1.dll

It will print a report like this:

cygwin1.dll: file format pei-i386

Sections:
Idx Name Size VMA LMA File off Algn
 0 .text 0007ea00 61001000 61001000 00000400 2**2
 CONTENTS, ALLOC, LOAD, READONLY, CODE, DATA
 1 .data 00008000 61080000 61080000 0007ee00 2**2
 CONTENTS, ALLOC, LOAD, DATA
 . . .

The only information we're concerned with are the VMA of the .text section and the VMA of the section
after it (sections are usually contiguous; you can also add the Size to the VMA to get the end address).
In this case, the VMA is 0x61001000 and the ending address is either 0x61080000 (start of .data
method) or 0x0x6107fa00 (VMA+Size method).

There are two basic ways to use SSP - either profiling a whole program, or selectively profiling parts of
the program.

To profile a whole program, just run ssp without options. By default, it will step the whole program.
Here's a simple example, using the numbers above:

$ ssp 0x61001000 0x61080000 hello.exe

This will step the whole program. It will take at least 8 minutes on a PII/300 (yes, really). When it's
done, it will create a file called "gmon.out". You can turn this data file into a readable report with gprof:

$ gprof -b cygwin1.dll

The "-b" means 'skip the help pages'. You can omit this until you're familiar with the report layout. The
gprof documentation explains a lot about this report, but ssp changes a few things. For example, the first
part of the report reports the amount of time spent in each function, like this:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name

Using Cygwin

112

 10.02 231.22 72.43 46 1574.57 1574.57 strcspn
 7.95 288.70 57.48 130 442.15 442.15 strncasematch

The "seconds" columns are really CPU opcodes, 1/100 second per opcode. So, "231.22" above means
23,122 opcodes. The ms/call values are 10x too big; 1574.57 means 157.457 opcodes per call. Similar
adjustments need to be made for the "self" and "children" columns in the second part of the report.

OK, so now we've got a huge report that took a long time to generate, and we've identified a spot we
want to work on optimizing. Let's say it's the time() function. We can use SSP to selectively profile
this function by using OutputDebugString() to control SSP from within the program. Here's a sample
program:

 #include <windows.h>
 main()
 {
 time_t t;
 OutputDebugString("ssp on");
 time(&t);
 OutputDebugString("ssp off");
 }

Then, add the -d option to ssp to default to *disabling* profiling. The program will run at full speed
until the first OutputDebugString, then step until the second. You can then use gprof (as usual) to see
the performance profile for just that portion of the program's execution.

There are many options to ssp. Since step-profiling makes your program run about 1,000 times slower
than normal, it's best to understand all the options so that you can narrow down the parts of your
program you need to single-step.

-v - verbose. This prints messages about threads starting and stopping, OutputDebugString calls, DLLs
loading, etc.

-t and -c - tracing. With -t, *every* step's address is written to the file "trace.ssp". This can be used
to help debug functions, since it can trace multiple threads. Clever use of scripts can match addresses
with disassembled opcodes if needed. Warning: creates *huge* files, very quickly. -c prints each
address to the console, useful for debugging key chunks of assembler. Use addr2line -C -f -s
-e foo.exe < trace.ssp > lines.ssp and then perl cvttrace to convert to symbolic
traces.

-s - subthreads. Usually, you only need to trace the main thread, but sometimes you need to trace all
threads, so this enables that. It's also needed when you want to profile a function that only a subthread
calls. However, using OutputDebugString automatically enables profiling on the thread that called it, not
the main thread.

-l - dll profiling. Generates a pretty table of how much time was spent in each dll the program used. No
sense optimizing a function in your program if most of the time is spent in the DLL. I usually use the -
v, -s, and -l options:

$ ssp -v -s -l -d 0x61001000 0x61080000 hello.exe

strace

Usage: strace.exe [OPTIONS] <command-line>
Usage: strace.exe [OPTIONS] -p <pid>

Using Cygwin

113

Trace system calls and signals

 -b, --buffer-size=SIZE set size of output file buffer
 -d, --no-delta don't display the delta-t microsecond timestamp
 -f, --trace-children trace child processes (toggle - default true)
 -h, --help output usage information and exit
 -m, --mask=MASK set message filter mask
 -n, --crack-error-numbers output descriptive text instead of error
 numbers for Windows errors
 -o, --output=FILENAME set output file to FILENAME
 -p, --pid=n attach to executing program with cygwin pid n
 -q, --quiet toggle "quiet" flag. Defaults to on if "-p",
 off otherwise.
 -S, --flush-period=PERIOD flush buffered strace output every PERIOD secs
 -t, --timestamp use an absolute hh:mm:ss timestamp insted of
 the default microsecond timestamp. Implies -d
 -T, --toggle toggle tracing in a process already being
 traced. Requires -p <pid>
 -u, --usecs toggle printing of microseconds timestamp
 -V, --version output version information and exit
 -w, --new-window spawn program under test in a new window

 MASK can be any combination of the following mnemonics and/or hex values
 (0x is optional). Combine masks with '+' or ',' like so:

 --mask=wm+system,malloc+0x00800

 Mnemonic Hex Corresponding Def Description
 ===
 all 0x000001 (_STRACE_ALL) All strace messages.
 flush 0x000002 (_STRACE_FLUSH) Flush output buffer after each message.
 inherit 0x000004 (_STRACE_INHERIT) Children inherit mask from parent.
 uhoh 0x000008 (_STRACE_UHOH) Unusual or weird phenomenon.
 syscall 0x000010 (_STRACE_SYSCALL) System calls.
 startup 0x000020 (_STRACE_STARTUP) argc/envp printout at startup.
 debug 0x000040 (_STRACE_DEBUG) Info to help debugging.
 paranoid 0x000080 (_STRACE_PARANOID) Paranoid info.
 termios 0x000100 (_STRACE_TERMIOS) Info for debugging termios stuff.
 select 0x000200 (_STRACE_SELECT) Info on ugly select internals.
 wm 0x000400 (_STRACE_WM) Trace Windows msgs (enable _strace_wm).
 sigp 0x000800 (_STRACE_SIGP) Trace signal and process handling.
 minimal 0x001000 (_STRACE_MINIMAL) Very minimal strace output.
 pthread 0x002000 (_STRACE_PTHREAD) Pthread calls.
 exitdump 0x004000 (_STRACE_EXITDUMP) Dump strace cache on exit.
 system 0x008000 (_STRACE_SYSTEM) Serious error; goes to console and log.
 nomutex 0x010000 (_STRACE_NOMUTEX) Don't use mutex for synchronization.
 malloc 0x020000 (_STRACE_MALLOC) Trace malloc calls.
 thread 0x040000 (_STRACE_THREAD) Thread-locking calls.
 special 0x100000 (_STRACE_SPECIAL) Special debugging printfs for
 non-checked-in code

The strace program executes a program, and optionally the children of the program, reporting any
Cygwin DLL output from the program(s) to stdout, or to a file with the -o option. With the -w option,
you can start an strace session in a new window, for example:

$ strace -o tracing_output -w sh -c 'while true; do echo "tracing..."; done' &

This is particularly useful for strace sessions that take a long time to complete.

Note that strace is a standalone Windows program and so does not rely on the Cygwin DLL itself (you
can verify this with cygcheck). As a result it does not understand symlinks. This program is mainly
useful for debugging the Cygwin DLL itself.

Using Cygwin

114

tzset

Usage: tzset [OPTION]

Print POSIX-compatible timezone ID from current Windows timezone setting

Options:
 -h, --help output usage information and exit.
 -V, --version output version information and exit.

Use tzset to set your TZ variable. In POSIX-compatible shells like bash,
dash, mksh, or zsh:

 export TZ=$(tzset)

In csh-compatible shells like tcsh:

 setenv TZ `tzset`

The tzset tool reads the current timezone from Windows and generates a POSIX-compatible timezone
information for the TZ environment variable from that information. That's all there is to it. For the way
how to use it, see the above usage information.

umount

Usage: umount.exe [OPTION] [<posixpath>]

Unmount filesystems

 -h, --help output usage information and exit
 -U, --remove-user-mounts remove all user mounts
 -V, --version output version information and exit

The umount program removes mounts from the mount table in the current session. If you specify a
POSIX path that corresponds to a current mount point, umount will remove it from the current mount
table. Note that you can only remove user mount points. The -U flag may be used to specify removing
all user mount points from the current user session.

See the section called “The Cygwin Mount Table” for more information on the mount table.

Using Cygwin

115

Using Cygwin effectively with Windows
Cygwin is not a full operating system, and so must rely on Windows for accomplishing some tasks. For
example, Cygwin provides a POSIX view of the Windows filesystem, but does not provide filesystem
drivers of its own. Therefore part of using Cygwin effectively is learning to use Windows effectively.
Many Windows utilities provide a good way to interact with Cygwin's predominately command-line
environment. For example, ipconfig.exe provides information about network configuration, and net.exe
views and configures network file and printer resources. Most of these tools support the /? switch to
display usage information.

Unfortunately, no standard set of tools included with all versions of Windows exists. Generally, the
younger the Windows version, the more complete are the on-board tools. Microsoft also provides free
downloads for Windows XP (the Windows Support Tools). Additionally, many independent sites such
as download.com [http://download.com], simtel.net [http://simtel.net], and Microsoft's own Sysinternals
[http://technet.microsoft.com/en-us/sysinternals/default.aspx] provide quite useful command-line
utilities, as far as they are not already provided by Cygwin. A few Windows tools, such as find.exe,
link.exe and sort.exe, may conflict with the Cygwin versions make sure that you use the full path (/usr/
bin/find) or that your Cygwin bin directory comes first in your PATH.

Pathnames
Windows programs do not understand POSIX pathnames, so any arguments that reference the filesystem
must be in Windows (or DOS) format or translated. Cygwin provides the cygpath utility for converting
between Windows and POSIX paths. A complete description of its options and examples of its usage are
in the section called “cygpath”, including a shell script for starting Windows Explorer in any directory.
The same format works for most Windows programs, for example

notepad.exe "$(cygpath -aw "Desktop/Phone Numbers.txt")"

A few programs require a Windows-style, semicolon-delimited path list, which cygpath can translate
from a POSIX path with the -p option. For example, a Java compilation from bash might look like this:

javac -cp "$(cygpath -pw "$CLASSPATH")" hello.java

Since using quoting and subshells is somewhat awkward, it is often preferable to use cygpath in shell
scripts.

Cygwin and Windows Networking
Many popular Cygwin packages, such as ncftp, lynx, and wget, require a network connection.
Since Cygwin relies on Windows for connectivity, if one of these tools is not working as expected you
may need to troubleshoot using Windows tools. The first test is to see if you can reach the URL's host
with ping.exe, one of the few utilities included with every Windows version since Windows 95. If you
chose to install the inetutils package, you may have both Windows and Cygwin versions of utilities
such as ftp and telnet. If you are having problems using one of these programs, see if the alternate one
works as expected.

There are a variety of other programs available for specific situations. If your system does not have an
always-on network connection, you may be interested in rasdial.exe for automating dialup connections.
Users who frequently change their network configuration can script these changes with netsh.exe. For
proxy users, the open source NTLM Authorization Proxy Server [http://apserver.sourceforge.net] or the
no-charge Hummingbird SOCKS Proxy [http://www.hummingbird.com/products/nc/socks/index.html]
may allow you to use Cygwin network programs in your environment.

http://download.com
http://download.com
http://simtel.net
http://simtel.net
http://technet.microsoft.com/en-us/sysinternals/default.aspx
http://technet.microsoft.com/en-us/sysinternals/default.aspx
http://apserver.sourceforge.net
http://apserver.sourceforge.net
http://www.hummingbird.com/products/nc/socks/index.html
http://www.hummingbird.com/products/nc/socks/index.html

Using Cygwin

116

The cygutils package
The optional cygutils package contains miscellaneous tools that are small enough to not require their
own package. It is not included in a default Cygwin install; select it from the Utils category in setup.exe.
Several of the cygutils tools are useful for interacting with Windows.

One of the hassles of Unix-Windows interoperability is the different line endings on text files. As
mentioned in the section called “Text and Binary modes”, Unix tools such as tr can convert between
CRLF and LF endings, but cygutils provides several dedicated programs: conv, d2u, dos2unix,
u2d, and unix2dos. Use the --help switch for usage information.

Creating shortcuts with cygutils
Another problem area is between Unix-style links, which link one file to another, and Microsoft .lnk
files, which provide a shortcut to a file. They seem similar at first glance but, in reality, are fairly
different. By default, Cygwin does not create symlinks as .lnk files, but there's an option to do that, see
the section called “The CYGWIN environment variable”. These symlink .lnk files are compatible with
Windows-created .lnk files, but they are still different. They do not include much of the information
that is available in a standard Microsoft shortcut, such as the working directory, an icon, etc. The
cygutils package includes a mkshortcut utility for creating standard native Microsoft .lnk files.

But here's the problem. If Cygwin handled these native shortcuts like any other symlink, you could not
archive Microsoft .lnk files into tar archives and keep all the information in them. After unpacking,
these shortcuts would have lost all the extra information and would be no different than standard
Cygwin symlinks. Therefore these two types of links are treated differently. Unfortunately, this means
that the usual Unix way of creating and using symlinks does not work with native Windows shortcuts.

Printing with cygutils
There are several options for printing from Cygwin, including the lpr found in cygutils (not to
be confused with the native Windows lpr.exe). The easiest way to use cygutils' lpr is to specify
a default device name in the PRINTER environment variable. You may also specify a device on the
command line with the -d or -P options, which will override the environment variable setting.

A device name may be a UNC path (\\server_name\printer_name), a reserved DOS device
name (prn, lpt1), or a local port name that is mapped to a printer share. Note that forward slashes
may be used in a UNC path (//server_name/printer_name), which is helpful when using lpr
from a shell that uses the backslash as an escape character.

lpr sends raw data to the printer; no formatting is done. Many, but not all, printers accept plain text as
input. If your printer supports PostScript, packages such as a2ps and enscript can prepare text files
for printing. The ghostscript package also provides some translation from PostScript to various
native printer languages. Additionally, a native Windows application for printing PostScript, gsprint, is
available from the Ghostscript website [http://www.cs.wisc.edu/~ghost/].

http://www.cs.wisc.edu/~ghost/
http://www.cs.wisc.edu/~ghost/

117

Chapter 4. Programming with Cygwin

Programming with Cygwin

118

Using GCC with Cygwin

Standard Usage
Use gcc to compile, just like under UNIX. Refer to the GCC User's Guide for information on standard
usage and options. Here's a simple example:

Example 4.1. Building Hello World with GCC

bash$ gcc hello.c -o hello.exe
bash$ hello.exe
Hello, World

bash$

Building applications for 64 bit Cygwin
The 64 bit Cygwin toolchain uses the Microsoft x64 calling convention [http://en.wikipedia.org/wiki/
X86_calling_convention#Microsoft_x64_calling_convention] by default, so you can create applications
using the Win32 API just as with the 32 bit Cygwin toolchain.

There's just one important difference. The 64 bit Cygwin compilers use a different data model than the
Mingw and Microsoft compilers. For reference, see the Wikipedia entry on 64-bit computing [http://
en.wikipedia.org/wiki/64-bit_computing#64-bit_data_models].

While the Mingw and Microsoft compilers use the LLP64 data model, Cygwin compilers use the LP64
data model, just like Linux. This affects the size of the type long. In the LLP64 model preferred by
Microsoft, sizeof(long) is 4. This applies for the related Win32 types like LONG, ULONG, DWORD,
etc., too.

In the LP64 model used by Cygwin, sizeof(long) is 8, just like the size of pointers or the types
size_t/ssize_t. This simplifies porting Linux applications to 64 bit Cygwin, but it requires due
diligence when calling Windows functions taking LONG, ULONG, DWORD, or any other equivalent
type. This is especially important in conjunction with pointers.

Here's an example. The Win32 function ReadFile returns the number of read bytes via a pointer to a
DWORD variable:

BOOL WINAPI ReadFile (HANDLE, PVOID, DWORD, PDWORD, LPOVERLAPPED);

Note that the forth parameter is a pointer to a DWORD, thus it's a pointer to a 4 byte type, on 32 as well
as on 64 bit Windows. Now we write our own my_read function using ReadFile:

Example 4.2. 64bit-programming, Using ReadFile, 1st try

ssize_t
my_read (int fd, void *buffer, size_t bytes_to_read)
{
 HANDLE fh = _get_osfhandle (fd);
 ssize_t bytes_read;

 if (ReadFile (fh, buffer, bytes_to_read, (PDWORD) &bytes_read, NULL))
 return bytes_read;

http://en.wikipedia.org/wiki/X86_calling_convention#Microsoft_x64_calling_convention
http://en.wikipedia.org/wiki/X86_calling_convention#Microsoft_x64_calling_convention
http://en.wikipedia.org/wiki/X86_calling_convention#Microsoft_x64_calling_convention
http://en.wikipedia.org/wiki/64-bit_computing#64-bit_data_models
http://en.wikipedia.org/wiki/64-bit_computing#64-bit_data_models
http://en.wikipedia.org/wiki/64-bit_computing#64-bit_data_models

Programming with Cygwin

119

 set_errno_from_get_last_error ();
 return -1;
}

While this example code works fine on 32 bit Windows, it has in fact a bad bug. The assumption
that the size of ssize_t is the same as the size of DWORD is wrong for 64 bit. In fact, since
sizeof(ssize_t) is 8, ReadFile will write the number of read bytes into the lower 4 bytes of the
variable bytes_read, while the upper 4 bytes will contain an undefined value. my_read will very
likely return the wrong number of read bytes to the caller.

Here's the fixed version of my_read:

Example 4.3. 64bit-programming, Using ReadFile, 2nd try

ssize_t
my_read (int fd, void *buffer, size_t bytes_to_read)
{
 HANDLE fh = _get_osfhandle (fd);
 DWORD bytes_read;

 if (ReadFile (fh, buffer, bytes_to_read, &bytes_read, NULL))
 return (ssize_t) bytes_read;
 set_errno_from_get_last_error ();
 return -1;
}

GUI Mode Applications
Cygwin comes with an X server, so usually you should compile your GUI applications as X applications
to allow better interoperability with other Cygwin GUI applications.

Other than that, Cygwin allows you to build programs with full access to the standard Windows API,
including the GUI functions as defined in any Microsoft or off-the-shelf publication.

The build process is similar to any other build process. The only difference is that you use gcc -
mwindows to link your program into a GUI application instead of a command-line application. Here's
an example Makefile:

myapp.exe : myapp.o myapp.res
 gcc -mwindows myapp.o myapp.res -o $@

myapp.res : myapp.rc resource.h
 windres $< -O coff -o $@

Note the use of windres to compile the Windows resources into a COFF-format .res file. That
will include all the bitmaps, icons, and other resources you need, into one handy object file. For more
information on windres, consult the Binutils manual.

Programming with Cygwin

120

Debugging Cygwin Programs
When your program doesn't work right, it usually has a "bug" in it, meaning there's something wrong
with the program itself that is causing unexpected results or crashes. Diagnosing these bugs and fixing
them is made easy by special tools called debuggers. In the case of Cygwin, the debugger is GDB,
which stands for "GNU DeBugger". This tool lets you run your program in a controlled environment
where you can investigate the state of your program while it is running or after it crashes. Crashing
programs sometimes create "core" files. In Cygwin these are regular text files that cannot be used
directly by GDB.

Before you can debug your program, you need to prepare your program for debugging. What you need
to do is add -g to all the other flags you use when compiling your sources to objects.

Example 4.4. Compiling with -g

bash$ gcc -g -O2 -c myapp.c
bash$ gcc -g myapp.c -o myapp

What this does is add extra information to the objects (they get much bigger too) that tell the debugger
about line numbers, variable names, and other useful things. These extra symbols and debugging
information give your program enough information about the original sources so that the debugger can
make debugging much easier for you.

To invoke GDB, simply type gdb myapp.exe at the command prompt. It will display some text telling
you about itself, then (gdb) will appear to prompt you to enter commands. Whenever you see this
prompt, it means that gdb is waiting for you to type in a command, like run or help. Oh :-) type
help to get help on the commands you can type in, or read the [GDB User's Manual] for a complete
description of GDB and how to use it.

If your program crashes and you're trying to figure out why it crashed, the best thing to do is type run
and let your program run. After it crashes, you can type where to find out where it crashed, or info
locals to see the values of all the local variables. There's also a print that lets you look at individual
variables or what pointers point to.

If your program is doing something unexpected, you can use the break command to tell gdb to stop
your program when it gets to a specific function or line number:

Example 4.5. "break" in gdb

(gdb) break my_function
(gdb) break 47

Now, when you type run your program will stop at that "breakpoint" and you can use the other gdb
commands to look at the state of your program at that point, modify variables, and step through your
program's statements one at a time.

Note that you may specify additional arguments to the run command to provide command-line
arguments to your program. These two cases are the same as far as your program is concerned:

Example 4.6. Debugging with command line arguments

bash$ myprog -t foo --queue 47

Programming with Cygwin

121

bash$ gdb myprog
(gdb) run -t foo --queue 47

Programming with Cygwin

122

Building and Using DLLs
DLLs are Dynamic Link Libraries, which means that they're linked into your program at run time
instead of build time. There are three parts to a DLL:

• the exports
• the code and data
• the import library

The code and data are the parts you write - functions, variables, etc. All these are merged together, like
if you were building one big object files, and put into the dll. They are not put into your .exe at all.

The exports contains a list of functions and variables that the dll makes available to other programs.
Think of this as the list of "global" symbols, the rest being hidden. Normally, you'd create this list by
hand with a text editor, but it's possible to do it automatically from the list of functions in your code. The
dlltool program creates the exports section of the dll from your text file of exported symbols.

The import library is a regular UNIX-like .a library, but it only contains the tiny bit of information
needed to tell the OS how your program interacts with ("imports") the dll. This information is linked
into your .exe. This is also generated by dlltool.

Building DLLs
This page gives only a few simple examples of gcc's DLL-building capabilities. To begin an exploration
of the many additional options, see the gcc documentation and website, currently at http://gcc.gnu.org/

Let's go through a simple example of how to build a dll. For this example, we'll use a single file
myprog.c for the program (myprog.exe) and a single file mydll.c for the contents of the dll
(mydll.dll).

Fortunately, with the latest gcc and binutils the process for building a dll is now pretty simple. Say you
want to build this minimal function in mydll.c:

#include <stdio.h>

int
hello()
{
 printf ("Hello World!\n");
}

First compile mydll.c to object code:

gcc -c mydll.c

Then, tell gcc that it is building a shared library:

gcc -shared -o mydll.dll mydll.o

That's it! To finish up the example, you can now link to the dll with a simple program:

int
main ()
{
 hello ();
}

http://gcc.gnu.org/

Programming with Cygwin

123

Then link to your dll with a command like:

gcc -o myprog myprog.c -L./ -lmydll

However, if you are building a dll as an export library, you will probably want to use the complete
syntax:

gcc -shared -o cyg${module}.dll \
 -Wl,--out-implib=lib${module}.dll.a \
 -Wl,--export-all-symbols \
 -Wl,--enable-auto-import \
 -Wl,--whole-archive ${old_libs} \
 -Wl,--no-whole-archive ${dependency_libs}

The name of your library is ${module}, prefixed with cyg for the DLL and lib for the import
library. Cygwin DLLs use the cyg prefix to differentiate them from native-Windows MinGW DLLs,
see the MinGW website [http://mingw.org] for more details. ${old_libs} are all your object files,
bundled together in static libs or single object files and the ${dependency_libs} are import libs
you need to link against, e.g '-lpng -lz -L/usr/local/special -lmyspeciallib'.

Linking Against DLLs
If you have an existing DLL already, you need to build a Cygwin-compatible import library. If you have
the source to compile the DLL, see the section called “Building DLLs” for details on having gcc build
one for you. If you do not have the source or a supplied working import library, you can get most of the
way by creating a .def file with these commands (you might need to do this in bash for the quoting to
work correctly):

echo EXPORTS > foo.def
nm foo.dll | grep ' T _' | sed 's/.* T _//' >> foo.def

Note that this will only work if the DLL is not stripped. Otherwise you will get an error message: "No
symbols in foo.dll".

Once you have the .def file, you can create an import library from it like this:

dlltool --def foo.def --dllname foo.dll --output-lib foo.a

http://mingw.org
http://mingw.org

Programming with Cygwin

124

Defining Windows Resources
windres reads a Windows resource file (*.rc) and converts it to a res or coff file. The syntax
and semantics of the input file are the same as for any other resource compiler, so please refer to any
publication describing the Windows resource format for details. Also, the windres program itself is
fully documented in the Binutils manual. Here's an example of using it in a project:

myapp.exe : myapp.o myapp.res
 gcc -mwindows myapp.o myapp.res -o $@

myapp.res : myapp.rc resource.h
 windres $< -O coff -o $@

What follows is a quick-reference to the syntax windres supports.

id ACCELERATORS suboptions
BEG
"^C" 12
"Q" 12
65 12
65 12 , VIRTKEY ASCII NOINVERT SHIFT CONTROL ALT
65 12 , VIRTKEY, ASCII, NOINVERT, SHIFT, CONTROL, ALT
(12 is an acc_id)
END

SHIFT, CONTROL, ALT require VIRTKEY

id BITMAP memflags "filename"
memflags defaults to MOVEABLE

id CURSOR memflags "filename"
memflags defaults to MOVEABLE,DISCARDABLE

id DIALOG memflags exstyle x,y,width,height styles BEG controls END
id DIALOGEX memflags exstyle x,y,width,height styles BEG controls END
id DIALOGEX memflags exstyle x,y,width,height,helpid styles BEG controls END

memflags defaults to MOVEABLE
exstyle may be EXSTYLE=number
styles: CAPTION "string"
 CLASS id
 STYLE FOO | NOT FOO | (12)
 EXSTYLE number
 FONT number, "name"
 FONT number, "name",weight,italic
 MENU id
 CHARACTERISTICS number
 LANGUAGE number,number
 VERSIONK number
controls:
 AUTO3STATE params
 AUTOCHECKBOX params
 AUTORADIOBUTTON params
 BEDIT params

Programming with Cygwin

125

 CHECKBOX params
 COMBOBOX params
 CONTROL ["name",] id, class, style, x,y,w,h [,exstyle] [data]
 CONTROL ["name",] id, class, style, x,y,w,h, exstyle, helpid [data]
 CTEXT params
 DEFPUSHBUTTON params
 EDITTEXT params
 GROUPBOX params
 HEDIT params
 ICON ["name",] id, x,y [data]
 ICON ["name",] id, x,y,w,h, style, exstyle [data]
 ICON ["name",] id, x,y,w,h, style, exstyle, helpid [data]
 IEDIT params
 LISTBOX params
 LTEXT params
 PUSHBOX params
 PUSHBUTTON params
 RADIOBUTTON params
 RTEXT params
 SCROLLBAR params
 STATE3 params
 USERBUTTON "string", id, x,y,w,h, style, exstyle
params:
 ["name",] id, x, y, w, h, [data]
 ["name",] id, x, y, w, h, style [,exstyle] [data]
 ["name",] id, x, y, w, h, style, exstyle, helpid [data]

[data] is optional BEG (string|number) [,(string|number)] (etc) END

id FONT memflags "filename"
memflags defaults to MOVEABLE|DISCARDABLE

id ICON memflags "filename"
memflags defaults to MOVEABLE|DISCARDABLE

LANGUAGE num,num

id MENU options BEG items END
items:
 "string", id, flags
 SEPARATOR
 POPUP "string" flags BEG menuitems END
flags:
 CHECKED
 GRAYED
 HELP
 INACTIVE
 MENUBARBREAK
 MENUBREAK

id MENUEX suboptions BEG items END
items:
 MENUITEM "string"
 MENUITEM "string", id
 MENUITEM "string", id, type [,state]
 POPUP "string" BEG items END
 POPUP "string", id BEG items END
 POPUP "string", id, type BEG items END
 POPUP "string", id, type, state [,helpid] BEG items END

id MESSAGETABLE memflags "filename"
memflags defaults to MOVEABLE

Programming with Cygwin

126

id RCDATA suboptions BEG (string|number) [,(string|number)] (etc) END

STRINGTABLE suboptions BEG strings END
strings:
 id "string"
 id, "string"

(User data)
id id suboptions BEG (string|number) [,(string|number)] (etc) END

id VERSIONINFO stuffs BEG verblocks END
stuffs: FILEVERSION num,num,num,num
 PRODUCTVERSION num,num,num,num
 FILEFLAGSMASK num
 FILEOS num
 FILETYPE num
 FILESUBTYPE num
verblocks:
 BLOCK "StringFileInfo" BEG BLOCK BEG vervals END END
 BLOCK "VarFileInfo" BEG BLOCK BEG vertrans END END
vervals: VALUE "foo","bar"
vertrans: VALUE num,num

suboptions:
 memflags
 CHARACTERISTICS num
 LANGUAGE num,num
 VERSIONK num

memflags are MOVEABLE/FIXED PURE/IMPURE PRELOAD/LOADONCALL DISCARDABLE

	Cygwin User's Guide
	Table of Contents
	Chapter 1. Cygwin Overview
	What is it?
	Quick Start Guide for those more experienced with Windows
	Quick Start Guide for those more experienced with UNIX
	Are the Cygwin tools free software?
	A brief history of the Cygwin project
	Highlights of Cygwin Functionality
	Introduction
	Permissions and Security
	File Access
	Text Mode vs. Binary Mode
	ANSI C Library
	Process Creation
	Problems with process creation
	Signals
	Sockets
	Select

	What's new and what changed in Cygwin
	What's new and what changed in 1.7.34
	What's new and what changed in 1.7.33
	What's new and what changed in 1.7.32
	What's new and what changed in 1.7.31
	What's new and what changed in 1.7.29
	What's new and what changed in 1.7.28
	What's new and what changed in 1.7.27
	What's new and what changed in 1.7.26
	What's new and what changed in 1.7.25
	What's new and what changed in 1.7.24
	What's new and what changed in 1.7.23
	What's new and what changed in 1.7.22
	What's new and what changed in 1.7.21
	What's new and what changed in 1.7.19
	What's new and what changed in 1.7.18
	What's new and what changed in 1.7.17
	What's new and what changed in 1.7.16
	What's new and what changed in 1.7.15
	What's new and what changed in 1.7.14
	What's new and what changed in 1.7.13
	What's new and what changed in 1.7.12
	What's new and what changed in 1.7.11
	What's new and what changed in 1.7.10
	What's new and what changed in 1.7.9
	What's new and what changed in 1.7.8
	What's new and what changed in 1.7.7
	What's new and what changed in 1.7.6
	What's new and what changed in 1.7.5
	What's new and what changed in 1.7.3
	What's new and what changed in 1.7.2
	What's new and what changed from 1.5 to 1.7
	OS related changes
	File Access related changes
	Network related changes
	Device related changes
	Other POSIX related changes
	Security related changes
	Miscellaneous

	Chapter 2. Setting Up Cygwin
	Internet Setup
	Download Source
	Selecting an Install Directory
	Local Package Directory
	Connection Method
	Choosing Mirrors
	Choosing Packages
	Download and Installation Progress
	Shortcuts
	Post-Install Scripts
	Troubleshooting

	Environment Variables
	Overview
	Restricted Win32 environment

	Changing Cygwin's Maximum Memory
	Internationalization
	Overview
	How to set the locale
	The Windows Console character set
	Potential Problems when using Locales
	List of supported character sets

	Customizing bash

	Chapter 3. Using Cygwin
	Mapping path names
	Introduction
	The Cygwin Mount Table
	UNC paths
	The cygdrive path prefix
	Symbolic links
	Using native Win32 paths
	Using the Win32 file API in Cygwin applications
	Additional Path-related Information

	Text and Binary modes
	The Issue
	The default Cygwin behavior
	Binary or text?
	Programming

	File permissions
	Special filenames
	Special files in /etc
	Invalid filenames
	Forbidden characters in filenames
	Filenames with unusual (foreign) characters
	Case sensitive filenames
	POSIX devices
	The .exe extension
	The /proc filesystem
	The /proc/registry filesystem
	The @pathnames

	The CYGWIN environment variable
	Implemented options
	Obsolete options

	POSIX accounts, permission, and security
	Brief overview of Windows security
	Mapping Windows accounts to POSIX accounts
	Mapping Windows SIDs to POSIX uid/gid values
	Cygwin user names, home dirs, login shells
	Caching account information
	NFS account mapping
	Samba account mapping
	The /etc/nsswitch.conf file

	File permissions
	Switching the user context
	Switching the user context with password authentication
	Switching the user context without password, Method 1: Create a token from scratch
	Switching the user context without password, Method 2: LSA authentication package
	Switching the user context without password, Method 3: With password
	Switching the user context, how does it all fit together?

	Cygserver
	What is Cygserver?
	Cygserver command line options
	How to start Cygserver
	The Cygserver configuration file

	Cygwin Utilities
	cygcheck
	cygpath
	dumper
	getconf
	getfacl
	kill
	ldd
	locale
	minidumper
	mkgroup
	mkpasswd
	mount
	Using mount
	Cygdrive mount points
	Limitations

	passwd
	pldd
	ps
	regtool
	setfacl
	setmetamode
	ssp
	strace
	tzset
	umount

	Using Cygwin effectively with Windows
	Pathnames
	Cygwin and Windows Networking
	The cygutils package
	Creating shortcuts with cygutils
	Printing with cygutils

	Chapter 4. Programming with Cygwin
	Using GCC with Cygwin
	Standard Usage
	Building applications for 64 bit Cygwin
	GUI Mode Applications

	Debugging Cygwin Programs
	Building and Using DLLs
	Building DLLs
	Linking Against DLLs

	Defining Windows Resources

